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PREFACE

This report is divided into two parts. Part I, "Lyapunov Stability
Theory and the Stability of Solutions to Partial Differential Equations" is
a glight revision of the Doctoral Dissertation of Dr. Gabe R. Buis which was
submitted to and approved by the Graduate Faculty of the School of Engineering,
University of Pittsburgh, September, 1967, This regearch was directed by
his Major Advisor, Dr., William G. Vogt, Associate Professor of Electrical
Engineering and Principal Investigator of the grant., Part II, "Contraction
Groups and Equivalent Norms," by William G. Vogt, Martin M. Eisen and Gabe R,

Buis presents further extensions of some of the research reported in Part I,

This research was supported under the National Aeronautics and
Space Administration Grant No. NGR 39-011-039 with the University of

Pittgburgh.
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PART I

LYAPUNOV STABILITY THEORY AND THE STABILITY OF SOLUTIONS

TO PARTIAL DIFFERENTIAL EQUATIONS

by

Gabe Rinse Buis
- Department of Electrical Engineering
University of Pittsburgh

ABSTRACT

Lyapunov stability theory is generalized to semi-groups and groups of
linear operators in Hilbert spaces. The existence of a Lyapunov functional
is sufficient for the asymptotic stability of semi-groups and necessary and
sufficient for the asymptotic stability of groups. This theory is applied
to a class of partial differential equations, yielding stability conditions

which are mathematically rigorous,




SUMMARY

Lyapunov's stability theory has become very important in the stability
analysis of solutions to ordinary differential equations. Its extension to
partial differential equations has been restricted to a few scattered
applications which generally lack mathematical rigor. The complex mathemat-
ical nature of partial differential equations makes extension of the stability
theory to partial differential equations very difficult, The objective of
this dissertation is to develop a mathematically rigorous Lyapunov stability
theory for a class of partial differential equations.

The approach taken to this problem is that of generalizing Lyapunov's
Direct Method for ordinary differential equations to a class of operator
differential equations, This generalization is based on the fundamental
solution structure of groups and semi-groups, which is not restricted to
ordinary differential equations,

This leads to the formulation of sufficient conditions on an operator
to generate stable or asymptotically stable semi~groups and necessary and
sufficient conditions on am operator to generate asymptotically stable groups.

The semi-group and group structures enable one to associate with the
infinitesimal generator an operator differential equation., The derived
stability conditions extend then to the stability of the null solution of
this differential equation., The generators of these semi-groups and groups
constitute a large class of bounded and unbounded operators.

The second stage is to formulate partial differential equatfoms in
the framework of the operator differential equations. Starting with a formal

partial differential operator, distributions are introduced to define the




extended operator in a complete space., The next step is to associate‘boundary
conditions with the formal partial differential operator. This is limited to
the so-called Dirichlet boundary conditions, which are important for many
stability investigations.

For the class of strongly elliptic partial differential operators the
domain and range are formulated in terms of Sobolev spaces. Subsequently, the
developed stability theory is applied to a class of evolution equations with
strongly eiliptic partial differential operators and Dirichlet boundary
conditions, giving sufficient conditions for asymptotic stability of the null
solution,

A similar formulation is given for a class of wave equations. However,
for this case the necessary and sufficient conditions for asymptotic stability
of the null solution are established by developing a suitable Lyapunov
Functional, At the same time this proves that the solutions possess thé group
property. Various applications are gi@en. The stability analysis is further
extended to some nonlinear partial differential equations. With the exception
of these last results the emphasis has been on a mathematically rigorous

formulation of the stability problem,




I. INTRODUCTION

In recent years Lyapunov stability theory has become an important tool
in the stability analysis of solutions to linear and nonlinear ordinary

*
(D has generated many

differential equations, The original work of Lyapunov
contributions to the stability theory of solutions to ordinary differential
equations and has provided many applications. Two of the more significant ones
are the paper by Kalman and Bertram(z) and the book by LaSalle and Lefschetz(32
Where these contributions involve Lyapunov's Direct Method, the central problem
becomes the construction of a Lyapunov function, For nonlinear systems this is
generally very difficult,

Although the development of Lyapunov stability theory and applications
to solutions of ordinary differential equations has progressed rapidly, its
application to solutions of partial differential equations has remained
limited. This is the case despite the fact that many physical systems must be
represented by partial differential equations. However, the difficulties
encountered in applying Lyapunov stability theory to partial differential
equations parallel those in establishing the existence and uniqueness
properties of solutions to partial differential equatioms.

Yet stability remains one of the most important properties of distributed
parameter systems. Many of the stability results for partial differential
equations are obtained by using methods of approximation, These methods might
not give sufficient conditions for stability except in the case of infinites-
imally small perturbations. Stability can be defined in many different ways.
In reference to stability theory it will be interpreted here as stability in

*Parenthetical references placed superior to theline of text
refer to the bibliography.




the sense of Lyapunov: a system is said to be stable if for sufficiently

small initial perturbations the solutions remain close to the original solution
for all future time, The advantages of Lyapunov's Direct Method over
approximate methods are many. Most important, Lyapunov's Direct Method employs
the system equations directly without resorting to approximations., The method
also allows mathematical rigor and in principle the introduction of nonlinear-
ities.

On the other hand, there is the importance of partial differential
equations in the fields of reactor physics, hydrodynamics, magnetohydrodynamics, ,
control processes, etc, These facts certainly motivate an investigation of i
possible ways to extend Lyapunov stability theory for the stability analysis
of solutions to partial differential equations. The following section gives
a survey of the significant results obtained so far. This survey shows how
limited these results are, The survey also points out the lack of mathematical
rigor in many of the applications. This section is followed by a short out-
line of general problem areas in the stability study of solutions to partial

differential equations,
A, Review of the Literature :

Many stability results for partial differential equations are derived
by using approximate methods., The basis for these approximate methods is the
reduction of the partial differential equations to a system of ordinary
differential equations., This can be done by either approximating the model by
one having a finite number of degrees of freedom via spatial discretization or
by assuming a harmonic time dependence. The first case allows the application

of the well-known techniques for analyzing the stability of ordinary differen-




tial equatioms; in particular, for infinitesimally small perturbations, which
is presénted as a justification for the system linearization.

In the second case a modal analysis is in general necessary. To
achieve this, use is made of the Galerkin process which is based on a trunca-
tion of the modal expansion, A linearization again limits the amount of work
involved, The use of these methods is wide-spread and well published., Since
this approach does not constitute the subject of this thesis, reference will

(4,5) (6)

and Eckhaus as the most recently

just be made to the works by Bolotin
published books,

As distinct from these approximate methods, Lyapunov's Direct Method
deals directly with the system of partial differential equations without
resorting to approximation. Morecover, it is potentially applicable for the
stability analysis of nonlinear systems. Thus it is not surprising that
attmepts have been made to apply Lyapunov's Direct Method to derive sufficient
conditions for the stability of equilibrium solutions of systems of partial
differential equations. A step toward applying Lyapunov's Direct Method to
partial differential equations was made by Massera(72 who extended this method
to denumerably infinite systmes of ordinary differential equations.

The application of Lyapunov's Direct Method for the stability analysis
of solutions to partial differential equations requires a generalization of
the method to function spaces in which a metric p is defined. Consequently,
the concepts of stability must be defined in terms of this metric. A general
stability theory now based on the existence of a Lyapunov functional is
establisﬁed by Zubov(s) for the invariant sets of dynamical systems in general

metric spaces. Zubov employs this theory in Chapter 5 to derive results for

systems of partial differential equatioms.



The most general type of system that has been considered is of the form

du(t,x)
—35v— = Lu(tx (1-1)

where Eﬂt,zp is an n~dimensional vector valued function defined over some
region € of an m—~dimensional Euclidean space E". L is a linear or nonlinear
matrix differential operation defined on Q. To specify solutions, a set of
boundary conditions must be given. In addition, a solution will depend on
some initial function 50(5) belonging to an n-dimensional space of initial
functions.

The application of Lyapunov stability theory for the determination of
stability conditions for equilibrium solutions of (I-1) is almost entirely
based on the work of Zubov(s). However, in all those cases the validity of
the results depends on the system being a dynamical system, i.e., on the fact
that the solutions possess the group property, or to a somewhat lesser extent,
the semi-group property (t > 0 only). The mathematical justification of this

fact is either extremely vague or omitted.

Zubov(g) establishes quite conclusive results for systems of the form
du(t,x) du
o - fEwn (1-2)

—

the solutions of which constitute, under suitable assumptions, a dynamical
system., Brayton and Miranker(g) apply his results to establish stability
conditions for a nonlinear system representing an electrical circuit, without
properly verifying the exact conditions for a dynamical system. Blodgett(lo)
takes a chemical reactor model to apply Zubov's results,

Zubov also compares the stability properties of the trivial solutions

of the system




Ju k Ju

“"2: fs (ul, o.o,un) +Z big-}-{-s- (S=l,2,.-.,n) (I""3)

ot i=1 i
and the related system of ordinary differential equations

du
s

T ° fs (ul,..., un) (5=1,2,44.,n) (1-4)

He shows that the asymptotic stability of the trivial solution of (I-4) assures
the asymptotic stability of the trivial solution of (I-3), A similar result
relates the stabllity behavior of the equilibrium of the system of partial

differential equations of higher order

30.1 +eoet O

82_ % mqy
— = A eeses O o [ — (I-S)
ot m 1 nlell e
X
Z a,.=0 m
j=1 J
to the stability of the equilibrium of the system
du
& = A u, (1-6)
The nature of the derived results is very theoretical and often
(11)

difficult to implement in practical applications. Hsu applied Zubov's

results to a nuclear reactor system, but does not verify the dynamical system

properties, Wang(lz) in a kind of survey paper, considers those L operators

which are infinitesimal generators of semi-groups. However, in this case,
the conditions are only sufficient for stabdility.

Another class of systems frequently encountered is of the form

d Zg(t’_}_{_) al{(t,,}_{)
5 + u + _I;ll_(t’_) = 9_ (1'7)
3t 3 t

with u(t,x) and L as under (I-1), Although (I-7) can be reduced to the form
(I-1), it has the distinct advantage that the Lyapunov functional can readily

be derived from the total system energy, again giving only sufficient condi-~




tions for stability., Most other contributions are not as general as the ones

above, but reflect more direct applications to specific problems.

(13)

Movchan considered the equation

udu 3w (1-8)

with the boundary conditions:
2

u = a—%% = 0 for x=0 and x=1.
9 X

By defining the metric p in a suitable manner he is able to verify results from
the theory of vibrations of plates by taking as Lyapunov functional:

b
_ ) 2
V(u) = é (uXx + a u

Similarly Movchan(l4) verifies classical stability results for a system of

2
+ ut) d x.

hinged rectangular plates under compression, the deflection of which, u(x,y,t),

is given by the dimensionless equation:

2 4 4 4 2 2
R T s LI Wt PR P SN I ¢ )
9t X 3X0y 2y X oy

with boundary conditiomns:
azu 82u
u=—-= 0 at x=0, x=1, u-= - = Oaty=0, y=1.
X 3y

(15)

Wang studies the stability of a simplified flexible vehicle with a

dimensionless equation of perturbed motion about its -equilibrium state as

given by 9
m(x)vizz a_y.(_fz:.,.x_)_ + "oﬁ‘d(t”‘) Qult,x)
st 3 t (I-10)
2 2
+ LZ(EI(X) L&%}X_) Yy=0
9x 3 X
and boundary conditions
du(t,x) 3 2u(t,x)
u(t,0) = 0, ————tax = 0 3 EI(x) —————2=~ =0
2 x x=0 3 X x=1




2

and 2 (EI(X)B u(t,x) ) =21 o v222ab Jult,x) + dult,x)
2 a 0

X 9 X x=1 3t 3Ix x=1

But he does not consider the existence problems of the solutions involved.
Parks(le) applies Lyapunov's Direct Method to the panel flutter

problem. The equation in dimensionless form is given by

2 2
u?-—‘21+3-3 +d§-—2-f§-—;+Ma—£=O (I-11)
2t ot 3 x I x 2 x
and boundary conditions
2
u=22=0 forx=0 andx =1.
9 X

In these applications an important role in deriving the sufficient
conditions for stability is played by integral inequalities. The results
obtained are presented without mathematical rigor. Another deficiency is the
general interpretation of the conditions obtained for stability.,

In order to discuss stability in a meaningful sense it is often
necessary to put restrictions on the initial states. Although Volkov(l7)
implied this in an earlier work, the idea of introducing a second metric for

this purpose seems to have been originated by Movchan(l8). Stability is then

(19) uses this

defined in terms of the two metrics, rather than one. Wang
concept in a stability analysis of elastic and aeroelastic systems.

The work of Lakshmikantham(zo) is closely related to Zubov's results.
A practical application can be found in Wei's paper(21) in which the stability
of a system of partial differential equations describing the first order

chemical reaction in the presence of a catalyst is analyzed, This system can

be reduced to a pair of identical partial differential equations of the form

2
du _ 3____; - ¢2 u exp ____L_Bu(l—u (I-12)
3t  9x 1+ 8(Q-u)

10




with 0 < x < 1 and boundary conditions:

[+*]

2 = 0 and u(t,1) = I,

x=0

QL

After linearizing (I~12) the Euclidean metric has been taken as a Lyapunov
functional,

This survey of all the significant contributions indicates that many
problems concerning the application of Lyapunov stability theory to partial
differential equations remain unsolved, In the next section the problems in-
volved will be analyzed in more detail, and the most logical approach to

further applications will be established.

B. General Problem Areas

The literature survey shows that the main theoretical contribution to
Lyapunov stability theory for solutions to partial differential equatiomns is
given by Zubov(8). The important restriction on his result is the requirement
that the system of partial differential equations defines a dynamical system.
This implies that L of (I-1) must generate an operator which possesses the
group property. However, many partial differential operators can
only be defined as the infinitesimal generators of semi-groups. Thus the
"group property" will only be satisfied for t > 0. Since stability is usually
concerned with the properties of positive half trajectories, it seems natural
that a Lyapunov stability theory can be formulated for systems having only the
semi-group property. This suggests the development of a general stability
theory for the class of operators generating a semi-group. This must be
followed by the formulation of L in terms of this class of operators and where
possible the results so obtained should be related to the actual boundary

value problem,

11




After solving the problem for the time-invariant case there arises the
possibility of extending the results to the time-invariant case.

Another extension can be directed towards the development of a
Lyapunov stability theory for nonlinear partial differential equations., The
formulation of a Lyapunov stability theory for semi-groups appears a natural
start for research in this field. This is because the infinitesimal generators
of contraction semi-groups, which are stable, are the linear dissipative opera-
tors. The natural extension of these linear dissipative operators for the
nonlinear case are the monotone 0perators(22). The question arises, therefore,
if it is possible to extend the Lyapunov stability theory for systems with
dissipative operators to include monotone operators as well,

Many of the above problems touch on research areas in mathematics which

are currently being explored. It is expected that many of the above problems

will provide an emerging field of future research in stability theory.

12



II. STATEMENT OF THE PROBLEM

A, TFormal Partial Differential Equations

Many of the physical problems that are formulated by partial differen-
tial equations can be described formally by the general equation

9 }_{(t 93_{.)
9t

=L u(t,x) x¢@ (11-1)
vhere u(t,x) is an n-vector function and L is a matrix whose elements are
linear or nonlinear differential operators specified on a bounded connected
open subset © of an m-dimensional Euclidean space, E". The parameters of L
can be gpace and time dependent,

In order to specify solutions to (II-1l) a set of additional constraints
or boundary conditions must be given by

Hu(t,x") =0 x' 30 (11-2)
wvhere H i1s a matrix whose elements are specified differential operators and
9 2 is the boundary of Q, Q=9 +30.

In addition to the boundary conditions, solutions to (II-1) will
depend on some initial functions 20(5). It will be assumed for the moment
that, given some initial function 30(_75) belonging to some normed linear space
H, it can be shown that solutions to (II-1) and (II-2) exist and belong to H.
A solution to (II-1) and (II-2) will be designated as g(t,i;_go(z),to), that is,
the solution starting at tq and with initial conditions 20(3:_), H(tO’E;EO(E)’t(?:
y, .

The solutions that are of particular interest in stability studies are
the equilibrium solutions, u_ (x). The equilibrium solutions can be defined

—eq

as:

13




Definition II-1., An equilibrium solutionm, Eeq(i) is a solution of (II-1) and

du . (t,%)

(I1I-2) such that X3

= 0 for all t > t_ and all xeQ. Thus

0
E(t’i;geq(i)’to) = Eeq(_}_g_) for all t > to. This is the same as determining the
— Ty - '

geq(_}_(_) such that -Iiieq(-’i) = 0 and Ey—eq(ﬁ') 0, x'aaq.
Stability can be defined in many different ways; however, stability

will be defined here in the sense of Lyapunov.

Definition 1I-2., The equilibrium solution Eeq(i) of (II-1) and (1II-2) is said
to be stable in the sense of Lyapunov if for every real number ¢ > 0, there
exists a real number § > O such that for 30(§)€H’IL30(§)72eq(§)ll <§ dimplies
”E(t’l‘.;.‘io(i‘.)’to) - y_eq(g_c_)][ <e for all t 2 t.

Definition II-3, The equilibrium solution Eeq(i) of (II-1) and (II-2) is said

to be asymptotically stable if it is stable and in addition ||Eﬁt,5320(§);0)_
Y @ |]+0 as toe,

It follows from the literature survey that many authors have investiga-
ted problems similar to the one formulated above using Lyapunov's Direct Method.
In many cases no attention has been paid to the question of existence of solu-
tions to (II-1) and (II-2). Furthermore Lyapunov's Direct Method for ordinary
differential equations is based on the properties of bounded operators in
finite dimensional space. In solving the stability problem for (II-1) - (II-2),
it is generally assumed that the functions are defined on the proper spaces,
i.e., the functions possess enough continuous derivatives, It is furthermore
assumed that all operations of differentiation, integration, etc., can formally
be carried out and that the functions resulting from these operations still
belong to the defined normed linear space, i.,e., that the space is complete,

In order to satisfy all these requirements and thus conduct a rigorous

investigation of the existence and stability properties of solutions to (II-1)

14




and (II-2), the formulation of the problem must be carefully scrutinized. This
investigation makes extensive use of the concepts of functional analysis, in
particular, the analysis of functions defined in complete spaces, For this
purpose the formal partial differential equation (II-1), that is, without
boundary conditions, is considered and the properties of the formal partial
differential operator are studied in spaces that possess the necessary
differentiability properties. As a part of the required technique, it is
necessary to complete the spaces of differentiable functions. For this purpose
it is necessary to introduce suitably defined generalized derivatives.

Once this process is carried out (II-1) can be interpreted as a general
operator differential equation. A Lyapunov stability theory will be developed
for a certain class of operator differential equations, which is analogous to
Lyapunov's Direct Method for ordinary differential equations. The formal
partial differential operator is then a restriction of a differential operator
from this class. Finally there remains the problem of relating the stability
properties of the formal partial differential equation to those of the original
boundary value problem., In the next section the general operator differential

equation is evaluated,
B. Evaluation to Operator Differential Equations

Lyapunov's Direct Method for finite dimensional systems of ordinary
differential equations is based on certain fundamental properties of the
solutions, which all systems of finite dimensional ordinary differential
equations have in common. Similar properties hold for certain classes of
operator differential equations to which certain classes of formal partial

differential equations belong,

15




For the characterization of the operator differential equation

consider
dx
dt

Let (II-3) be valid for all xeX where X is some n-dimensional Euclidean space,

=AX (1I-3)

En, and A a linear operator on X into X. Thus, A is a bounded linear operator.
Then (II-3) becomes a stationary linear ordinary differential equation for
which a matrix representation is obtained by choosing a basis in E'. A
Lyapunov stability theory has been developed for these equations. This theory
is based on the properties of bounded operators in finite dimensional spaces,
If X is a general normed linear space, then A no longer need have these

properties; in fact, A might be unbounded and (II-3) should be specified as

dx
T =Ax (xeD@ C X5 A: D (A) > REAE X) (11-4)

where D(A) is the domain of A and R(A) is the range of A, For these unbounded
operators on general function spaces, a mathematical theory has emerged in which
the properties of the solutions are studied on one-parameter families of
bounded linear operators, the semi-groups and groups.

Lyapunov's Direct Method for ordinary differential equations requires
the construction of a Lyapunov function. For a general operator differential
equation (II-4) this requires the construction of a Lyapunov functional. The
stability properties follow from an evaluation of the time derivative of the
Lyapunov functional along the solutions. For the Lyapunov functional the
time derivative must formally be defined, and there is a possibility that it
does not exist for all xeX. In the context of semi-groups this time derivative

can easily be derived.

16



In the following it should be clear from the context whether x must be
interpreted as an element of the normed linear space X (in the general
theoretical development) or whether x is a space variable in Em, the space on
which the differential operator is defined.

A large class of formal linear stationary partial differential equations

=L u (t,x) xe@ (1I-5)

where @ is a bounded connected open subset of an m-dimensional Euclidean space,
Em, and L(x) is a formal partial differential operator on the space variable
X, 1s subsummed in a family of general operator differential equations (II-4)
which generate a semi-group or a group. Thus, the operator A in (II-4) is an !
extension of L(x) in (II-5) and coincides with L(x) when the functions u are
sufficiently smooth.
The main problem is to deduce from (II-5) the form of the space X,

the linear operator A, the domain D(A) and the range R(A). This in itself is

not always easy.
C. A Stability Theory

In the preceding sections the difficulties of establishing a Lyapunov
stability theory for partial differential equations (II-1) and (II-2) have
been discussed, On the other hand, the general linear operator differential
equation (II-4) can be considered as a generalization of a system of linear
ordinary differential equations for which a Lyapunov stability theory exists.
In order to derive a Lyapunov stability theory which can rigorously be applied
to a class of partial differential equations, the stability problem will be

formulated as follows:
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1, Develop a Lyapunov stability theory for a class of operator
differential equations (II-4) similar to Lyapunov's Direct Method for ordinary
differential equations.

2. Extend the formal partial differential equations to operator
equations on complete function spaces in such a way that all mathematical
operations can be carried out rigorously.

3. Associate with the formal partial differential operator, so defined,
a boundary value problem and give a formulation of the problem in terms of the
general operator differential equation for which the stability theory is
developed,

4, Give applications of the developed stability theory to specific
boundary value problems.

Even though the scope of these problems is limited to a small class of
partial differential equatioms, which are linear and statiomary, they
constitute one of the first developments of a mathematically rigorous approach

to the stability investigations of partial differential equatioms,
D. Contributions to the Problem

The research concerning the stability properties of the solutions to
certain classes of partial differential equations was carried out as part of
a research project sponsored by the National Aeronautics and Space Administra-
tion under Grant Number NGR 39-011-039 with the University of Pittsburgh,
Dr. William G. Vogt, Associate Professor of Electrical Engineering and
Principal Investigator for this project originated this research effort and
in the course of the research has contributed considerably to the results

reported in this thesis,
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The approach to the stability problem and the results obtained w;re
developed in the course of numerous discussions between Dr. Vogt and the
author, Since the results reported are to a large extent obtained as a joint
effort, it is difficult to isolate many single results as principally Dr. Vogt's
or the author's. Some of these are indicated below.

Most of the research carried out so far on this subject lacked a solid
mathematical justification., The initial efforts by the author gave a
verification, using Lyapunov stability theory, of stability results obtained
by Eckhaus(é) who used approximate methods. These results were eventually
established rigorously for the linear case (the case for which the results of
Eckhaus are certain to hold) and are given in Chapter IX.

The important contribution at this stage was the introduction of the
concept of equivalent inner products by the author. However, its use was
primarily aimed at obtaining self-adjointness properties for the formal
operator involved and improving the éstimates obtained by the use of integral

-inequalities. The abstraction of this notion and its final implementation in
a stability theory for dissipative operators is largely due to Dr. Vogt.

Lyapunov's Direct Method for systems of ordinary differential equations
is based on some fundamental properties, i.e., group properties, of the solu-
tions, A first observation showed that this group property is not limited to
finite dimensional systems of ordinary differential equations, but is common
to alarger class of systems. Moreover, a still larger class of systems
possesses the more general semi-group property., This led to a formulation of
a Lyapunov stability theory for groups and semi-groups. The stability
properties are in this case directly coupled to the trajectory structure, i.e.,

the solutions, The main goal became to express the conditions for the
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stability of the solutions in terms of the operator generating the group or
semi-group--in particular, those generating contraction groups or semi-groups.
A large class of such operators is formed by the bounded and unbounded
dissipative operators.

Dissipativity, in a particular case, is an inner product property while
stability is a norm property. This implies a Hilbert space theory. Since the
stability properties are invariant under equivalent norms, the introduction of
the principle of equivalent inner products mentioned above is crucial to link
the dissipativity property to the stability properties. Two inner products
are equivalent if and only if their induced norms are equivalent,

This subsequently allows the formulation of sufficient conditions on
an operator to generate stable or asymptotically stable semi-groups and

necessary and sufficient conditions on an operator to generate stable or

asymptotically stable groups. Dr, Vogt proved an important norm property of
groups which is used in the proof of the last statement.

The semi-group (group) structure enables one to formulate an operator
differential equation with its infinitesimal generator. The derived stability
conditions extend to the stability of the null solutions of this differential
equation. The stability theorems are given in Chapter V,

The conditions to be imposed on the operator do not restrict the class
of operators to bounded operators, Thus a stability theory is established for
a large class of operator differential equations defined in a Hilbert space.

The second stage is to formulate partial differential equations in the
framework ©f the operator differential equations. A kind of synthesis proced-

ure is used here,
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Starting out with a formal partial differential operator, the first
requirement is that the extended operator be defined in a complete space. This
is done by introducing distributions. The next step is to associate boundary
conditions with the formal partial differential operator. In the context of
the thesis this is limited to the so-called Dirichlet boundary conditions,
which are important for many stability investigations,

The class of formal partial differential operators is limited to the
strongly elliptic partial differential operators. The domain and range of the
extended operator are subsequently formulated in terms of Sobolev spaces. In
Chapter VII, the stability theory is applied to a class of evolution equations
with strongly elliptic partial differential operators and Dirichlet boundary
conditions.,

A similar formulation of a class of wave equations is presented in
Chapter VIII. The development of a Lyapunov functional for this class of wave
equations is considered one of the main contributions of this thesis. It
establishes conditions for asymptotic stability of the null solution and the
group property of the solutions to the wave equations.

Chapter IX is devoted to a number of applications which illustrate
various aspects of the developed stability theory. With the exception of
Chapter X, almost entirely the author's work, where some nonlinear systems are
formally analyzed, the emphasis has been on a mathematically rigorous
formulation of the stability problem. Even though only the stability proper=-
ties for a class of linear, stationary, partial differential equations are
established here, the directions to be pursued for enlarging this class have
been opened to further research. These results appear to be a significant

contribution toward a rigorous Lyapunov stability theory for a more general
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class of partial differential equations including nonlinear partial

differential equations.
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ITI. MATHEMATICAL PRELIMINARIES

Engineers have become familiar with the concepts of linear vector
spaces and linear transformations on these gpaces through the introduction of
the state space approach in control theory and the development of a Lyapunov
stability theory for ordinary differential equations. The stability study of
general operator differential equations adds another dimension to these
concepts. Functional analysis is a fundamental tool in the study of operators
defined in general function spaces. In the following sections some of the
basic notions and properties that are important in the stability analysis of
operator differential equations will be introduced, A more detailed treatment
and examples can be found in any book on functional analysis, for example,

Reference 23,
A, Normed Linear Spaces

In the previous chapter the general operator differential equation was
introduced by defining A as an operator in a normed linear space. Such a
space is defined as follows:

Definition III-1, Let X be a vector space over the field of real or complex

numbers. A norm on X, denoted by ||+||, is a real-valued function on X with
the following properties:
i. ||xl| z 0 for all xeX.
ii, x # 0 implies ||x|| # O.
i1i, |jex|] = |a|]l|x]|], ¢ some real or complex scalar.
iv. Hz + Z.” = Il_:gl | + ”l” (triangle inequality).
The vector space X, together with a norm on X, is called a normed linear space.

When the scalars over X are the reals, X is called a real normed linear space.
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The finite dimensional real Euclidean space, R", canbe made into a

normed linear space by defining the norm by

n
Hzll = Xi)l/2 ¥ x e RO,

The norm for a space can be defined in more than one way. Thus another norm
for R" is defined by

x| = sup |, | ¥ x e RV,

These two norms create two different normed linear spaces, with possibly
different basic properties. The introduction of a norm for rR? makes (II-3) a
special case of the general linear operator differential equations as defined
by (II-4).

The norm of X induces a metric or distance d which is defined by

d(xy) = |lx - 3] x, y X

i.e., the distance between two elements x and yeX is given by ||§_- ZJ|'
According to their properties one can distinguish different classes of normed
linear spaces, First of all the pre-Hilbert spaces are defined:

Definitions II1I-2, A real or complex normed linear space X is called a

pre~Hilbert space if its norm satisfies the condition
lx + 3112+ [z - 2l1? = 2 1=l1% + gl 5.

The more important normed linear spaces are the complete normed linear
spaces or Banach spaces. A Banach space X is a normed linear space in which
every Cauchy sequence converges with respect to the norm to a limit point in
X. A complete pre-Hilbert space is called a Hilbert space. The norm in the
Hilbert space is the one induced by an inner product, ]I§J| = ﬁE;E?l/Z. The

inner product, <+s+>, is defined in a real pre-Hilbert space by:

1 2 2
w5y =7 (lx+ 217 - |z - 31D,
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and in a complex pre-Hilbert space by:
<X, y> = §§,X?1 + ifi,iz?l
where wyey = (x+yll? = 1z - 21D,
This inner product has the following properties:
i, <a x,y> = o <x,y> "o real or complex
if, <x+y,z> = <x,2>+ <y,z>
iii, < x,y> = < y,x> for real space (= <-_}'1_,_;<:> for complex space)
iv. < x,x> > 0 whenever x # O.
The finite dimensional real Euclidean space Rn, is made into a Hilbert space
by defining the inner product by the following finite series:
< XY = XV, + Xy¥o + .00 + X ne
Stability is defined in terms of the norm chosen for the linear space. It
might be expected that the stability properties will depend on the particular
norm selected for the space, The norm can in general be chosen in many

different ways. The stability properties are preserved from one space to

another if the norms are equivalent, Two norms, ||- Il and || | |2, are

equivalent if there exist constants ¢y and Cys °°>02>c1>0 such that

e Nally s lall, scllxll;  mex) @1z

Moreover the spaces X; and X, denoted by X; = (X; |- ll) and X, = (X;||°l|2)
respectively are topologically equivalent,

For systems described on finite dimensional Euclidean spaces all
norms are equivalent, Thus stability with respect to one norm implies stabil-
ity with respect to another, i.e., stability in one normed space implies
stability in another, The stability problem evolves basically around the

selection of a norm, i.e., the normed linear space. For Hilbert spaces
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this reduces to the selection of an inner product.

Since the stability theory to be developed concerns primarily

(24)

dissipative operators , which are defined in terms of the inner product,
Hilbert spaces are very important. Dissipative operators can be studied in
somewhat more general spaces. These so-called semi-inner product spaces were

introduced by Lumer(zs). Lumer and Phillips(26)

studied dissipative operators
in these particular spaces.

Definition III-3., A semi-inner product space is defined on a complex or real

vector space X with norm ||- ! if to each pair x,y € X there corresponds a
complex or real number [x,y] such that
i, [x+ y,.2] = [x,2] + [y,z]
ii.  [ex,y] = alx,y]
111, [x,x] = ||x[|® for x40

v, |lxyll? < xx] - [yy]
Any Banach space can be made into a semi-inner product space. In particular,
for a Hilbert space the only semi-inner product is the usual immer product.

The relevant properties of normed linear spaces can be found in any
book on functional analysis and the papers given as references. Where
necessary in the following chapters, these properties will be recalled. 1In

the next section, linear operators and their properties in these various

spaces are introduced.

B, Linear Operators

This section is devoted to the characterization of operators(23)’(27>.

Let X and Y be two linear spaces over the same real or complex field. The

objective is to characterize the mappings T: x > y where x ¢ X and y ¢ Y,
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Definition III-4. The mapping T: x + y = T(x) defined on a linear manifold D

of X and taking values in Y with the property T(a X + B x2) = a('_l‘ﬁl) + 3(}32)
is called a linear operator on D C X into Y.

D = D(T), the set in X on which T operates, is called the domain of T.
The set in Y which results from the operation of T on D(T) C X is called the
range of T, R(I),

R(T) ={yeYr2y=Tx, xe D(D}.
In certain applications the null space N(T) is used as defined by
N@T = {xe D@ Ix=0l

If the range R(T) is contained in the scalar field K, then T is called a
linear functional. If a linear operator T gives a one-to-one map of D(T) onto
R(T), then the inverse map E-l gives a linear operator on R(T) onto D(T):

T—l

T x = x for x € D(T) and Ell‘_-ll=lforle R(D).
2_-1 is the inverse of T.

Proposition III-l., A linear operator T admits the inverse _'ll-l if and only if

T x = 0 implies x = 0.

Definition III-5. Let ll‘_l and _T__2 be linear operators with domains D(;r_l) and -

D(_T_Z) both contained in a linear space X, and ranges R(E]_) and R(Ez) both

contained in a linear space Y. Then I, =1 if and only if D(zl) = D(I_z_) and

Tl x=1T, x for all x ¢ D(_f_[‘_l) = 9(12). 1f D(Il) c D(Iz) and 113:_ = T,x for all

= -2 2
X € D(I_l), then T, is called an extension of I and I;a restriction of Ty '

written as _']_?_1 ¢ 12. '
An important role is played by the bounded linear operators. Let X
and Y be normed linear spaces. A linear operator T with domain in X and

range in Y is bounded if there exists a positive constant M < « such that for ' 2

all x e D(T)
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Hz =l <ulix]].
T is continuous at a point x € X and T is uniformly continuous in X are
equivalent statements, The class of all bounded linear operators on X into Y
is designated as L(X,Y) i.e., T eL(X,Y) D(T) = X, R(T) C Y, T is bounded.

Proposition III-2, Let X and Y be normed linear spaces. Then a linear

operator on D(T) C X into Y admits a continuous inverse I__l if and only if
there exists a positive constant y such that
[z x|l 2 v {Ix|]| for every x e D(D).

Definition ITI-6. If T is a bounded linear operator on a normed linear space

X into a normed linear space Y, then its norm is defined by

Hzil = swp [T x[] = sup ]| x]]

[1x1-1 TR
An extension of the notion of a bounded linear operator is that of a
closed linear operator. The definition is based on the notion of graph of
T, G(T).

Definition III-7, The product space X x Y is defined as the normed linear

space of all ordered pairs (x,y), x € X, y € Y, with the usual definitions of
addition and scalar multiplication and with norm given by

Wl = nax dlx]], |1g]]2.
Definition III-8, The graph G(I) of T is the set {(x,Tx)|x € D(T)}. Since

T is linear, G(T) is a subspace of X x Y. If the graph of T is closed in
X x Y, then T is said to be closed in X. When there is no ambiguity concern-
ing the space X, T is said to be closed.

The following remarks can be made:

i, T is closed if and only if {En} in 0(D), x *x, Tx -y, imply

_}ES'D(:I'_) and T x = y.
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ii, If T is 1-1 and closed, then _T_-l is closed,
iii. The null space of a closed operator is closed.
iv. If D(_’l_‘) is closed and T is continuous, then T is closed.
v. The continuity of T does not necessarily imply that T is closed.
T is closed does not necessarily imply that T is continuous.

Closed-Graph Theorem, A closed linear operator mapping a Banach space into a

Banach space is continuous.

Some additional properties of closed operators are introduced after
defining the adjoint operator,

For a Banach space X the conjugate or dual space, the Banach space of
bounded linear functionals on X, is indicated by X'. Let T be a linear
operator mapping the normed linear space X into the normed linear space Y and
wvith domain dense in X. Then the conjugate of T is denoted by T'. The
definition can be found in (23>.

If X and Y are Hilbert spaces, then thé notion of conjugate operator
of T can be extended to that of adjoint operator of T which is denoted by T*.
The operators one generally deals with are mappings from subsets of a Hilbert
space X into X. Let T be such a linear operator. The adjoint T* of T with

respect to X is defined by

<T x, y> = <x,T#y> for x € D(T) and y eV(T*)

T* exists if and only if D(T) is dense in X. The closure of D(T) in X is

denoted by U(T), thus D(T) is dense in X implies U(I) = X. A linear operator

T on D(T) C X into X will be called symmetric if T*2 T, i.e., if T* is an

extension of T, A linear operator T: D(_’l_‘_) + X is called self-adjoint if

T = T%,
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The following properties of symmetric and self-adjoint operators
should be noted:

i. A symmetric operator T has a closed symmetric extension

T*k = (@0 3 T,
ii., An everywhere defined symmetric operator is bounded and self-adjoint.
iii, A self-adjoint operator is closed since an adjoint operator is

closed.

The relation between closed operators and thelr adjoints is expressed

in the following important theorem and corollary:

Theorem III-1. Let T be a linear operator on D(E) C X into X such that

D(Z) = X. Thennzvadmits a closed linear extension if and only if T** = (T¥)*
exists, i.e., if and only if UQE*) = X,

Corollary III-1. If U(T) = X, then T is a closed linear operator if and only

if 2 = 2**.
Let us next illustrate the concept of bounded and unbounded linear
operators on finite and infinite dimensional spaces,

Example III-1. a. Consider the following operators in Rn.

If x = col (xl, Xy Kgs eeey xn) then let

- 1 1
R_}i i COl (xl, 5 Xz, cee n xn)
Ex = col (xl, 2x2, ese N xn).
n 21/2
£ ||x[]| = (] x7) then both D and E are bounded since
i=1
[ID x]] <|lx]| and [[E 2|] < n]|x|]. In fact, all stationary linear

operators on a finite dimensional Euclidean space are bounded.

b. Consider next the same operators on a infinite dimensional
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Fuclidean space Rw, thus if x = col (xl, Xy eses) then

- 1
21{.— col (Xl, ‘i‘xz ....')
Ex = col (%), 2%y, eccee)e
o % L2.1/2
If the norm of x € R is defined by ”_’EH = ( X x5 s then D will
i=1

still be bounded, since ||D x|| < ||x||s however, E will no longer be bounded.
The concept of dissipative operator is defined next.

Definition III-9. Let T be a linear operator such that D(T) and R(T) belong

both to the Hilbert space X. Then T is called dissipative if

Re <T x, x> <0 for all x e D(T).

Definition I1I-10. Let T be a linear operator such that D(T) and R(T) both
belong to X. Then T is called strictly dissipative if there exists a constant

¢ > 0 such that

Re <Tx, x> <-c¢C ||_}5||2 for all x € D(T).
This concept can similarly be defined in terms of semi-inner product.
This concept is used frequently in the following chapters, Definitions III-9
and III-10 imply that -T is positive and positive definite respectively.
Spectral theory for an operator T is the distribution of the values
of A for which -T-A = AL - T has an ’inverse and the properties of the inverse

when it exists., The following are the definitions of the frequently used

resolvent and spectrum,

Definition II1I-11, 1If Ao is such that the range R(E')\o) is dense in X and E)*o
has a continuous inverse (A I - E)-l, then A_ is said to be in the resolvent
set p(T) of T and this inverse (Aol - _’I;)-l is denoted by R(Ao; T) and i;: is
called the resolvent ( at Ao) of T. All complex numbers A not in p(T) %orm a

set o(T) called the spectrum of T. The spectrum o(T) is decomposed into
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disjoint sets PG(I), Cocz) and Ro(z) with the following properties: POQZ) is

the totality of complex numbers A for which !A does not have an inverse; POQEJ

is called the point spectrum of T.

CUC£> is the totality of complex numbers A for which Ea has a
discontinuous inverse with domain dense in X; CG(I) is called the continuous
spectrum of T, |

RUQE) is the totality of complex numbers A for which EA has an inverse

whose domain is not dense in X; Ro(T) is called the residual spectrum of T.

An important theorem concerning the resolvent is:

Theorem III-2., Let X be a Banach space and T a closed linear operator with

its domain D(T) and range R(T) both in X. Then, for any A€ p(I) the

resolvent (Aol - E)-l is an everywhere defined continuous linear operator,
The following section is devoted to some properties of Hilbert spaces,

which are very important for the development of the stability theory for a

class of operator differential equations.
C. Hilbert Spaces

In Chapter II the general operator differential equation (II-4) was
introduced with A defined on a general normed linear space X. It is next
assumed that X is a Hilbert space. Thus, either the norm of X is induced by
an inner product, or the norm satisfies the parallelogram law and therefore
induces an inner product. In Section A equivalent norms in Banach spaces
were defined. Since a Hilbert space belongs to a special class of Banach
spaces, the concept of equivalent norm not only holds, but can be formulated
more specifically with respect to the inner product structure of the Hilbert

space, In particular, it allows the introduction of the concept of equivalent

inner products as defined by:
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Defindition III-12. Let H1 = (H, <.,.>l) and H2

spaces consisting of the elements of a linear vector space H and the inmer

= (H, <.,.>2) be Hilbert

products <ese>. and <.,.>,, respectively, The inner products are called

1 2
equivalent if and only if the induced norms are equivalent.

This concept of equivalent inner product enables one to "carry" the
stability properties from one Hilbert space into another Hilbert space defined
for the elements of a linear vector space. It is also possible that the norm
induced by the inner product of a Hilbert space, Hl = (H; <~,->l), is
equivalent with another norm which does not satisfy the parallelogram law.

This last norm will not induce an inner product; the resulting space (H;||-|[2)
is thus not a Hilbert space, but still a Banach space.

The characterization of equivalent inner products can be made more
explicit by the Lax-Milgram Theorem(23).

Theorem III-3, (Lax-Milgram). Let H be a Hilbert space and let -B(x,y) be a

complex-valued functional defined on the product Hilbert space H x H which
satisfies the conditions:
i. Sesqui-linearity ,i.e.,
and
B(x, Byy; + By¥,) = ByB(X,y;) + B,B(X,¥,)
ii. Boundedness, i.e., there exists a positive constant y such that

1By < v ]| -1zl

iii. Positivity, i.e., there exists a positive constant § such that

2
B(x,x) 2 & ||x||
then there exists a uniquely determined bounded linear operator S eL(H,H) with

z

a bounded linear inverse §-1 e L(H,H) such that < x,y> = B(x, S y) whefgever

¢
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x andle H and II_S_H < 6—1, ||§__1|| Y.
The implications of this theorem for the equivalent inner products are
given by the following theorem:

Theorem III-4, Two inner products defined on a real linear vector space H

are equivalent if and only if there exists a symmetric bounded positive

definite linear operator S € L(H,H) such that X,¥>, = < x,8 y>, for all

X, y € H,

Proof: Let B(x,y) = <Xx,S8 v >1s where S is symmetric. Then B(x,y) 1is bilinear
and B(y,x) = <y,S x> < X,S y> 1° Since S is positive definite B(x,x) =
<%,8 x; 2 § <x,x>; and since § is bounded, B(x,x) = < x,5 x>, < Hle

||_§ 3{_] Il = v| |3c_| |]2_ there follows that B(x,y) = < X3, satisfies all the
properties of an inner product. The fact that the norms induced by <-,~>1 and
@se>, are equivalent implies that the inner products are equivalent.

Suppose s>y ‘and <*se>, are inner products with equivalent norms,

i.e., there exist positive constants a and B, 0 <a <B <=, such that,

a 11y 5 1elly s8Il -

Then since < 20>, is bilinear in real H, there follows

| <zl sl x|,z 8211l (gl ]
and therefore by Theorem III-3 there exists a uniquely determined S such
that
CHY = XS Y >y
But sincec< Y21 = YeXq there follows< x,S ¥y = <y,S x>, and S is symmetric
thus proving the theorem. S is obviously a self-adjoint operator.
In this framework of equivalent inner products it is possible to

derive the stability properties of the general operator differential equation of
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type (II-4) from the knowledge of the properties of the operator A only. Once
the formal partial differential equations are formulated in terms of the

general operator differential equations, the equivalent inner products enable
one to derive the maximal system parameter ranges for stability. This concept

can be extended to complex Hilbert spaces,
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IV, SEMI-GROUPS, GROUPS AND INFINITESIMAL GENERATORS

In order to develop a stability theery for the solutions of the
operator differential equation

d x
——=Ax (xeD@A) CX; A: D(A) »R@A) CX)  (IV-1)

dt
where X is a Banach space, A will be restricted to the class of operators which

are the infinitesimal generators of bounded linear operator valued functions

It’ t > 0 that satisfy the condition

Tivs L "L =1 (1v-2)

The notion of infinitesimal generator, to be formulated later, was
introduced by Hille and Yosida. Much about this basic concept can be found

(28) (23), together with the general theory of linear

in their respective books
operators in function spaces. Instead of the bounded linear Operators"_l'_t
having merely the semi-group property, the more restricted semi-groups of
class (Co) are introduced. It is in terms of these bounded operators that the
properties of a system (IV-1) can be studied more easily than in terms of the
operator A.

In the following two sections the semi-groups of class (CO), groups

of class (CO) and their infinitesimal generators are introduced,

A, Semi-Groups and Groups of Class (CO)

Let X be a Banach space with norm ||+||. For each fixed t > 0, let

It be a bounded linear operator om X into X, Zt eL(X,X), the set of all bounded
linear operators mapping X into X. Then the single parameter family of

;operators ﬂ;t; t>01} c L(X,X) with parameter t ER+ = [0, ») 1s said to

satisfy the semi-group property if
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. = t
Lr-t: Is II-t+s (t,s > 0).

Definition IV-1, If {zt; t > 0} C L(X,X) satisfies the conditions

i, T, «T =T
-5

- ~t+s (t,s Z 0

ii, I, =1 (I is the identify operator in L(X,X))

=0
iii. lim H_’Et X - _'J_T_t 3{_” = 0 for each ty > 0 and all x eX,
trt 0

then {Et} is called a semi~group of class (CO).
Because of the semi-group structure(AB) it follows that for a semi-
group f{t} of class (CO) there exist constants M > 0 and 8 < ®» such that

Nz || <m et

(t>20) . (Iv-3)
If in addition to (i), (ii), and (iii) of Definition (IV-1) B in

(IVv-3) can be chosen as B = 0, then

Hz ] < u 0 <t <) (1V-4)

and Q;t} is an edui-bounded semi-group of class (Co). In particular if

M=1, ie,, if
Nz Il 5 1 for (0 2t <= (IV-5)

then Qgt} is called contraction semi-group of class (C:)o

(23)

An equi~bounded semi-group of class (CO) is equi-continuous in t .

The equi-~continuous semi~groups are of main interest in the following
discussion of stability properties of unbounded differential operators. It
is clear that since Qgt} is only defined for t > O the corresponding operator
differential equation does not generate a dynamical system. The system
becomes a dynamical system if {It} can be extended to the negative time axis
and ﬂzt} becomes a group:

Definition IV-2, If tzt 3 = @ < t<=} C L(X,X) satisfies the conditionms:

LoD T oLy, e <bs <o)
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i1, T, =1
ifi., lm ||T x - T, x|| = 0 for each tje(-=, + =) and
t+t0 0

for all x € X, then {lt} is called a group of class (Co).
The alternative definition (Yosida(zs)) has the group {-S~t} def ined in
A
terms of equi-continuous semi-groups {_'I_‘t} and {'_I‘_t} by letting S, = I, for

A A
t >0 and §—t =TI fort >0, ylelding S, 'S"-t =1=1 I. Thus

7 1v-6
) I =T (1Iv-6)
with T defined on R(T,) C X.
The disadvantage of defining the group {_§t} in this manner is that
A
It as defined by (IV-6) is a semi-group only if it is defined on all of X,
ttus if R(I-t) = X,
If @t} is a semi-group (group) of class (CO), then (S } with

S =eat

S, zt is a semi-group (group) of class (CO) for constant o e(-~,»),

(23)

The group structure provides the norm of where {lt} is a graup

I,
of class (CO) with an upper bound--there exist constants M > 0 and 8 < =
such that

Nzl suefltl o ce cm, (1v-7)

If in (IV-7) B = 0, then {It} is an equi-bounded group of class jgo).

And if in addition M = 1 in (IV-7), then {_'_I‘_t} is a contraction group of class
€y

In the stability theory of semi-groups the contraction semi-groups of
class (Co) are very important, The nature of the groups, however, does not
limit the stability properties te contraction groups of class (Co). An

extremely important theorem in proving necessary and sufficient conditions for

asymptotic stability of groups was proven by Vogt:
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Theorem IV-1. (Vogt). Let ﬂzt 3 t e (~o,@)} c L(X,X) be a group. Then there

exist positive constants m and o such that

Iz, x|l 2 n ot lxl] o <t < (IV-8)

Proof: Since T T—t = 20 =1,
H=ll =z z, =[] < Hz Tz, =l
~1

oF Hz, =[1 > Mz 17 1=l
From (IV-7):

z 11ty el

-t -

and hence ||Zt.§|| 2 M—1 e-Bltl ||x||

which is the required inequality.
It should be noted that (IV-8) is a sufficient condition for the

existence of the inverse §;]'= §‘t for each t g€ (~»,») with D(g t) = X.

B. Infinitesimal Generators of Semi-Groups

and Groups of Class (CO)

In the previous section, the semi-group or group system structure has
been established. The next step is to derive the conditions for A so that the
solutions to (IV-1l) possess this structure. In the next chapter the Lyapunov
stability definitions and theory is established for these semi-groups or

groups.,

Definition IV-3, Let tgt s €2 0} c L(X,X) be an equi-continuous semi-group

of class (CO). The infinitesimal generator A of
-1

It is defined by

Ax=1lim ¢{h T, - D)x} (Iv-9)
== h>0t (—h ==

whenever this limit exists.
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A is a linear operator with domain

D(A) = ke X lm [0 (T, - Dx] exists in X}  (IV-10)
- ot h =T
and the range of A, R(A) C X. Since D(4) contains at least the vector 0, it

is nonempty. In fact D(A) = X(23).

The following theorem gives the necessary and sufficient conditions
for A to be an infinitesimal generator of a semi-group. The proof of the
(23)

theorems in this section can be found in

Theorem IV-2. Let A be a linear operator with D.(A) dense in X and R(A) in X
1

and let the resolvent (I - n ég-l exist in L(X,X). Then A is the infinites-
imal generator of a uniquely determined equi-continuous semi~group if and only
if there exists a positive constant c independent of n and m such that
lHa@ -2t 0™ ge @1,2,3, ... ; m=1,2,3,...).
(1Iv-11)
The semi-group generated by A in the above theorem is basically
related to the spectral properties of A in that (AI - é)—l exists everywhere

for Re(A)> O if A generates a semigroup statisfying [IE&II <M,

Corollary IV-1, If in Theorem IV-2, (IV-11) is replaced by

1,41
[

[]@ -0 8 <1 (a=1,2,3,...) (IV-12)
then A generates a contraction semi-group.

The following theorem relates certain semi-groups and their
corresponding infinitesimal generators.

Theorem IV-3. Let A be the infinitesimal generator of the semi-group fzt}

satisfying
oL eI Ly (s 20, L1
i1, t1;m0+||gt§-_>5|| =0¥xeX
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1ii. Ilztll <M eBt (t >0) withM > 0 and B < = and independent of t,
Then (A - B I) is the infinitesimal generator of the egui-continuous semi-
group -S—t = o Bt It of class (CO) and (A I - _A_)m1 is everywhere defined for
Re[A] > B.

The above theorems IV-2 and IV-3 give rise to the following corollary:

Corollary IV-2, Let A be a closed linear operator with U(A) = X and R(A4) C X

and let the resolvent (I -~ n"1 é)_l exist in L(X,X) for integer n sufficiently
large., Then A is the infinitesimal generator of a semi-group satisfying (i),
(ii), and (iii) of Theorem IV-3 if andonly if there exist constants, M > 0 and
B < = such that

@ - n-lé)-mll <M1 - 218)™ for m=1,2,3, ... and all large n. (IV-13)

In particular for those semi-groups T, satisfying (i), (ii), and

—t
lz | s e forall e 30, (IV-14)
(IV-13) can be replaced by
T -nt 7 <@ -8t for all large n. (IV-15)
I A < g

Notice that Bcan be positive as well as negative in cases (IV-13) and (IV-15).

These results relate semi-groups and their iInfinitesimal generators.
Similar results holdfor groups and their infinitesimal generators. The follow~
ing theorem summarizes these results:

Theorem IV-4. Let A be a linear operator with D(@) = X and R(A) in X. Let
1 -1

the resolvent (I -n" A) exist in X. Then A is the infinitesimal generator *
of a uniquely determined equi-continuous group Qgt; t e(-» ,»)} of class (CO)
if and only if there exists a positive constant M >0 such that

|| - n‘¥é>—m|| <M (m=1,2,3, ... and all large |n|, n N 0)

(1Iv-16)
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and

HZ |l <M (= <t<=), (1V-17)
If in addition A is closed and there exist positive constants M > 0, B8 > 0
such that

1

Ilg{ -n é)-mll <M(1 - ]n—llB)_m (m=1,2,3,...large|n|, n > 0) (Iv-18)

then {_'J:‘_t; - @ <t < o} satisfies

[z I =< Bl e <t <w. (IV-19)
If
(1 -~ n_lA)-lI <1 - n—l B)-l (for large |n , n>0)
— -_— = <
(IV-20)
then {:l‘_t; - ®w < t < «} satisfies
1 < Hltl (ot < w, (1v-21)

The statement A is a closed linear operator in Corollary IV-2 and the
last part of Theorem IV-4 is crucial, Further elaboration is possible for the
case vhen A, defined on a Hilbert space, is the infinitesimal generator of a
contraction semi-group of class (CO). These contraction semi-groups of class
(CO) are very important for stability investigations, Their infinitesimal
generators are the earlier defined dissipative operators. The results of the
(24)

following theorem and corollary are due to Phillips

Theorem IV-5., (Phillips). Let A be a linear operator with domain U(A) and

range R(A) both in the Hilbert space H and ﬁzgj = H, then A generates a
contraction semi-group of class (CO) in 11 if and only if A is dissipative with
respect to the inner product defined on H and R (I - A) = H.

A consequence of this theorem is the following corollary:

Corollary IV-3, If A is a closed linear operator with D(A) and R(A) both in

the Hilbert space H and D(é) = H, then A generates a contraction semi-group of
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class (CO) in H if A and its adjoint A¥*, are both dissipative with respect to
the inner product defined on H.

In the corollary it is agaln required that A is c-losed, a statement not
made in the theorem,

The principal requirement for A to generate a contraction semi-group is
that D(A) is dense in H and that A is maximally dissipative, i.e., A is not the
proper restriction of any other dissipative operator. A necessary and suffici-
ent condition is that R(A I ~ A) = H for all A > 0. 1In this case A is closed if
and only if R(x I - A) is closed. However, if no conditions are imposed on

R(x I - A) or equivalently on R(I - A), then A must be closed.

After having developed the relationship between the semi-group or group
and the infinitesimal generator, there remains one more step to identify
systems having the semi-group property with the operator differential equation
(Iv-1), Let Dt denote the time derivative of '_I_t x for x € X and define this
derivative by

- 14 -1
Dt_T_ x= lim [h (T h _E-t) x] (1Iv-22)

t haot =t

for X € X if the limit exists.
From Yosida(23)

Theorem IV-6. 1If x ¢ D(A) C X, then x € D(tht) and

D, T, x=AT x=T

—_t = =

‘ Ax for t > 0, (IV-23)
And in particular, A is commutative with Et for x € D(A). Thus if x e D(4),
then I . xc¢ D(A) for t > 0. 1In (IV-23) of the above theorem, one easily
recognizes the operator differential equation:
d x
=Ax (x e 'D(A) c X). (IV-24)

dt -
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Thus if in accordance with the above theorems proper restrictions are
placed on A, then the solutions to (IV-24) are the semi-group or group
trajectories given by the semi-group or group that is uniquely generated by A.
The properties of the solutions can be studied by investigating the properties

of this semi-group, i.e., of the infinitesimal generator A as given by (IV-24).
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V. LYAPUNOV STABILITY THEORY FOR
SEMI-GROUPS AND GROUPS
A. Definitions

Once the semi-group or group structure is established for the general

operator differential equations

dx
A2 D@ CX) (V-1)

then the solutions are semi-group or group trajectories. Thus the solution

starting at t=0 from x = %, eD(A) is given by

xtsx) =2, % tz0 (v-2)
with'z(o;ﬁo) = Xg» where A is the infinitesimal generator of the semi-group
f{t} . If A is the infinitesimal generator of a group{ Et} , then (V-2) holds
for -o< t< + o, Note that by Theorem IV-6, x(t; 3{_0)8 D(é) (t > 0) if zoev(é).
By the linearity of the semi-group, any trajectory can be referenced to the
origin x=0. Thus the stability of any solution can be determined by studying
the stability of the solution §ﬁt;§0) = 0, the origin or null solution. It is
now possible to give the definitions of stability in terms of the semi-group
Et generated by A of (V-1).

Definition V-1. The origin of (V-1) is stable in the sense of Lyapunov (with

respect to initial perturbations) if and only if, given an € > 0, there exists
a § > 0 such that
[l <6 (v-3)

implies that

||T X II <g (t >0; ¥ X, € X). (V-4)
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Definition V-2, The origin of (V-1) is asymptotically stable in the sense of

Lyapunov (with respect to initial perturbations) if and only if
i, it is stable

ii, lim ||T

s t =0

=)

The exponential nature of the semi-group structure usually gives rise
to a stronger form of asymptotic stability, namely exponential asymptotic
stability as defined by:

Definition V-3, The origin of (V-~1) is expomentially asymptotically stable in

the sense of Lyapunov (with respect to initial perturbations) if and only if
i, it is asymptotically stable
ii. there exist positive constants M and B such that
-Bt
E llxll v x, e . (V-6
Bt

I, xol] sM e

From Definition V-3 it is clear that Hg:_t || <Me ™ . If T} is a

group, then from Theorem IV-1 there follows for t > O, ||E¥|| >m e %t A
group ﬁEt} with the property that there exist four positive constants,

M>1>m>0,0 > B8 >0 such that

me x| s |1z, 2l <™ x| (20, xeD (V-7)

(PN

is called a group of exponential type.

The following theorems are direct consequences of the above definitions
and those in the preceding chapter:
' Theorem V-1l. A sufficient condition for the stability of the null solution of
(V-1) is that the semi-group ﬂ{t} be equi-bounded,
Theorem V-2, A sufficient condition for the exponential asymptotic stability
of the null solution of (V-~1) is that there exist positive constants M and B

such that
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Nz ] e (v-8)

B, Sufficient Conditions for Stability and

Asymptotic Stability of Semi-Groups

In the preceding section the stability properties are defined in terms
of the semi-group properties. Thus, when this semi-group is generated by an
operator, it is in terms of the solutions to the operator differential equation,
However, rather thén first solving the equation, one would like to base the
stability properties of the system directly on the properties of the operator,
i.e., to determine conditions for the operator so that the solutions exist and
at the same time are stable. These conditions are clearly spelled out in the
theorems in Chapter IV, Section B.

It is intuitive that stability of a null solution requires A to be the
infinitesimal generator of an equibounded semi-group. However, it is not so
easy to relate asymptotic or exponential asymptotic stability directly to such
a basic property. However, once the contraction property is established (IV-14)
and (IV-15) of Corollary IV-2 seem to provide the answer.

In Theorem IV-5 the principal conditions on A to generate a contraction
semi-group are that A is a dissipative operator with respect to an inner
product < .,-H-and RCE-éQ = Hl and consequently the null solution is stable,

The dissipativity is defined with respect to the particular inner
product of the space, but the semi-group property is invariant under equivalent
norming., In general, a semi-group {Zg' is stable if it is equi-bounded, i.e.,
||E%||l <M. The invariance under equivalent norming does not necessarily mean

that if ||_’£t| |1 = ME | II_tI lz < 1 then | |2 corresponds to an inner product

<-,->2. In other words, |
space,

|2 may define a Banach space' rather than a Hilbert
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The invariance of stability under equivalent norming suggests that if
A is dissipative with respect to any imner product equivalent to the inner
product of the space, then the dissipative property of A with respect to this
inner product is sufficient for stability and generation of a contraction
semi-group. For this reason the dissipativity of A is extended as follows:
Definition V-4, Let Hl be a real Hilbert space with inner product <ese>g.

A is dissipative in the extended sense if and only if there exists a self-

adjoint, positive definite, bounded linear operator S eL(H,H) such that

<X, S Axy

and A is strictly dissipative in the extended sense if and only if there exists

<0 xe D@ (V-9)

a g > 0 such that

< X .§é§>1 = -8 <x, .§._>1 X ED(A) (v-10)
Since under the conditions on S:

<§:l>2=<?£’.5_l’_>1 X, yeH

one could also call A dissipative in the extended sense if there exists an
equivalent inner product with respect to which A is dissipative., The following
theorem follows directly from Theorem IV-5.

Theorem V-3. Let A be a linear operator with D(é_) = H and R(é_) C H and

R(I - A) = H. Then A generates a contraction semi-group if and only if A is
dissipative in the extended sense.

Proof: Since A is dissipative in the extended sense there exists an inner
product with respect to which A is dissipative. The "if" part follows from

Theorem IV-5 by using this inner product as the inner product for the space.

If A generates a contraction semi-group according to | -||2 = Seye>,

then A is dissipative with respect to <«»«> and hence is dissipative in the
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extended sense.
Remark: Theorem V-3 includes Theorem IV-5, in the sense that A is not
dissipative with respect to the original inner product of the space. In! this
case Q;t; t > 0} is at least equi-bounded with respect to the norm induced by
the original inner product.

In order to derive some principal results on the stability and
asymptotic stability of certain classes of semi-groups, Lyapunov functionals
will be introduced,

A Lyapunov functional on a real Hilbert space H, is defined through the

1
symmetric, bilinear form,
V(x,y) = <X, 8y> =<3, 8%, X yeH (V-11)
where § is a self-adjoint, bounded positive definite, linear transformation,
S eL(B,H). Define the Lyapunov Functional by
v(_}i) = V(_:_c.,i) xe H. (V-12)
The time derivative of v(x), denoted by 5(5) along solutions to (V-1)

with A generating a semi-group{T ;t 2 0} C L(H,H) is given by:

V@ = lin ¥ @ x I, D - VED) (V-13)
t>0

whenever this limit exists.
But with

V(_']'.‘_t§+_:_c., T

T,ox-x =V(, x, T x) +V(x I x -VZ xx) - V3

and since V(x,y) is symmetric it follows that:

1
vix) = lim SV{(T_+ I x, (T_-1I) %)
—’ : t ¢ = = — _ =

=2 V(x, A x) (x e D). (V-14)
This leads to an important result:
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Theorem V-4. Let A be a linear operator with DQ&) = H, R(é) g H, and
R(I - A) = H. Then A is an infinitesimal generator of a contraction semi-group

if and only if there exists a Lyapunov Functional v (x) such that

V) = 2(x, A 0 xeD@).

Corollary V-4,1. Under the conditions of Theorem V-4, the null solution of

(V-1) is stable,
Proof: The "only if" part & the theorem follows from Theorem V-3 by taking
v(x) as,
V(X = <x,x>.
If there exists a v(x) given by V(x,y), then let < X,Y>, = V(x,y), with

< %, A x>y <0. Thus by Theorem V-3, since D(A) = H and R(L -~ A) = H, A

generates a contraction gemi-group Q;t; t > 0} with

||gt||2=<1 t > 0.

This result implies Corollary V-4,.1,

fiv

The statement of the theorem indicates that the conditions for existence
and stability of the solutions to a general operator differential equation of
the form (V-1) are much more restrictive than when (V-1) represents a finite
dimensional system of ordinary differential equations. The free interchange
of equivalent inner products can facilitate the investigation of these require-
ments,

The following theorem points out its importance for the case of
asymptotic stability.

Theorem V-5, Let A be a linear operator with @ = H, R(A) c H, R(L - A) = H.
Then the null solution of (V-1) is asymptotically stable 1f there exists

Lyapunov Functional v(x) such that
V@ = Wk, A -7 |zl} xeD@.
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Proof : Since all the conditions o Theorem V-4 are satisfied it follows that
A generates a contraction semi-group., To show that the null solutiom is

asymptotically stable notice that £rom

certainly follows

Vs A = <x, Aw, <- o |lxll2.

Next it must be shown that forn > N > 0, the inverse of (I - n-lA) exists such

that
Ha-at o, s a-ale™
f or some B, From the relation
c@-a EyX>y = < X,X>, = ot <A, x>,

it follows from Schwarz's inequality that

@ - 2" wxll,llsllz 1@ - oD, =

1 A xx,

= < > - n-
2‘.’.}.{. 2 | 1 < x’x>

2
and therefore that

It follows that

_at
||_T.tI|2 =<e hd

This is a sufficient condition for the asymptotic stability of the null solu-
tion,

Remark. The above theorems can similarly pe stated with the condition of A
being closed and with the subsequent modifications following the theorems of
Chapter 1V,
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Note also that the Lyapunov Functional gives only sufficient conditions
for stability or asymptotic stability respectively. This is a distinct
difference between the stability properties of systems having the semi-group
and group properties respectively, a fact clearly demonstrated in the follow-
ing section. It is foreseen that a slight conceptual change in the selection

of the Lyapunov Functional may alleviate this difficulty.

C. Necessary and Sufficient Conditions for the Exponential

Asymptotic Stability of Groups

In the preceding section the sufficient condition for the asymptotic
stability of semi-groups in terms of its infinitesimal generator was establish-
ed, This applies also to groups. However, the group property is the funda-
mental property of dynamical systems for which a Lyapunov stability theory has
been developed which includes both sufficient and necessary conditions for
stability or asymptotic stability. Thus, it is not surprising that in the case
of groups the approach developed in the previous section can be extended to
include the necessity. Again the Lyapunov Functional not only gives necessary
and sufficient conditions for stability or asymptotic stability but guarantees
also the existence of the solutions.

—t—

Theorem V-6. Let A be a linear operator with D(A) = H with inner product

and such that R(x I - A) = H for real A and{A[ sufficiently large.

<o,t>1
Then A is the infinitesimal generator of a group of exponential type if and
only if there exists a Lyapunov Functional v(x) = V(x,x) with

V(x,y) = <x, Sy>, = <8 x, y>, where S is a symmetric or self ~adjoint bounded,

positive definite operator, S e L(H,H) and such that for some constants o and

B, a > B >0
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- 2 aV(x,x) <Vv(x) = 2V(x, A x) <-28V(xx. (xe0(4)) (V-15)

If there exists a V(x,y) with the above properties, then let

Proof:
<ere>, = V(ess). To show that A generates a group there follows:
< (I - n_lA) Xy X>, = < XyX>, = n-'1 <A x, x>
= 2 X, = < BX% 2% X, -
Then with Schwarz's inequality:
A x,x>
-1 -1 T2 5%
- sl 2 ally 11 -0 2522
For n > NB > 0,
-1 -1
12 -n"" A, 21+ |n"7[8 (V-16)
and for n <- Na <0
-1 -1
L -a""All,2 1= o] e
Thus for In| > max (Na’ NB) n<0
Nz-ntall,z1- ™ «>o.
Therefore (I - a~t A)” " exists and
Lyl <= [o oy

t € (~», ©)} which satisfies

and thus by Theorem IV-4 A generates a group ﬂ[t
e, 11, = 2l o e <o,

From inequality (V-16) it follows by Corollary IV-2 that A generates a semi~

group flt; t > 0} with
t e [0, w)o

-Bt
||It||2 Se
are equivalent, this completes the proof of suffi-

|1y and 111,
The only if part will be demonstrated by construction of the required

Since |

ciency,
If A generates an exponentially asymptotically stable

Lyapunov Functional,
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group, then it follows from Theorem IV-1 that the most general group
{zt; te (-»,»)} satisfies

m e |x]|, ¢z, xll; <2 e™® ||x]], telo,=)

where «>M>1>m>0, »>qa >8>0 and ||T Mea][tl(—w<t<°°).
= = —=t!'1l

A

Next take n
Vas x,y) = [ <Tp x, Ty y>1 dt (V-17)

with n >0, Since <_I'.t§, Et: Yy > is for each t a numerical value, which is
everywhere defined and continuous on the compact interval [0,n] (V-17) can
be interpreted as a Riemann integral., For each fixed n, V(n; x,y) is a

symmetric bilinear form, which satisfies

2 O -2t
|V(n;£sl)| = Hl‘.“l ”ZH]_ M fe dt
(o]

2
=zl Hxll, g a-e0 18

Next let V(x,y) = 1lim V(n; x,y), then from (V-18) it follows that V(x,y)

n->xo

exists and is well defined, moreover

MZ
IV(E,Z)I = 78 ”2‘_”1 HXH]_
2
and Ve 2 3 Ixll3

The symmetric bilinear functional V(x,y) satisfies all the conditions
of the Lax-Milgram Theorem, thus there exists a uniquely determined, bounded,

pymmetric, positive definite linear operator S with

Vx,y) = % Sy> = <85Xx ¥> X YyeH

with
Mz

lIsll, ¢ 28 °

Next let ‘v(i) = V(x,x). Then there remains to be proven that \'7(5) = V(x, A x)

satisfies the conditions of Theorem V-6, But

94




VI, x I 2 - VEx
= lim n n
oo £<TT _}g,jf_rT x>1dr-£<Tx,IT§_>1 dt
= lm | n
- [ <I_ x I x, ds- [<T x, T x>, ds
ne |y =s = 1 5 —s = =s~1
= 1lim ot t
o> f <"_l‘_S x, T l:_>1 ds - I<_’1.‘_S§, _T_S x> ds.
n o
Therefore
2V(x,A x) = lim -1-'- V@, %, I, %) - V(x,x)| =
t>0
1 t
= = lim = f <T x, T x>, ds
t50 T o0 S =s =1
T T < XX (x e DAY

But since <e,.>. is equivalent to <ese>, = V(.,.), it follows that there exists

1
a > B > 0 such that

- oV(x,x) < V(x, Ax) <- B V(x,%).
This completes the proof of the theorem.

The interesting aspects of this theorem become clear in Section VIII,
where certain wave equations are studied, There, the difference between the
stability properties for the semi-group and group structures are demonstrated
by taking the same simple operator studied in Section VII in a diffusion
equation setting, and in Section VIII in a wave equation setting. In the

next section, the formal partial differential operator is synthesized to give

the appropriate representation (V-1).
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VI. FORMULATION OF FORMAL PARTIAL DIFFERENTIAL OPERATORS AS

UNBOUNDED OPERATORS AND THE SELECTION OF NORMS

In this chapter an unbounded operator A is obtained from a class of
formal partial differential operators. This means that D(ég and R(A) are
determined along with the transformation A x = y for certain x.

This is carried out by means of a synthesis process., First the linear
space in which the operator is defined is completed by introducing generalized
derivatives., Some basic definitions and lemmas from the theory of distribu-
tions are given., Sobolev spaces are introduced; these spaces are significant
for the determination of the domain and range of the unbounded operator. The
Sobolev Imbedding Theorem is stated, The chapter concludes with a discussion

of some aspects of the selection of norms for the stability problem,

A, Derivation of the Differential Operator from the

Formal Partial Differential Operator

The derivation of the formal partial differential operator in the
(29)

proper space setting is adapted from Dunford and Schwartz . The real case
is considered only; the results can be extended to the complex case.

l. Notatiomns

The symbol J will dencte an index, i.e., a k-tuple J = (jl""’jk) of

integers, |J| = k, min J = min j., max J = max j;+ The case J is
1<ic<k * 1<ic<k
vacuous is denoted by J = 0. The symbol R" is the real Euclidean n-space,

An index J will be said to be an index for R" if min J > 1l and max J £ n., If
5_5Rn, so that x = (Xl’x2’ sees xn) and J is an index for Rn, so that

J = (jl; ey jk)’ k = [JI , then zf will denote the expression Xyq Xy eer Xjpe
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The operations g;:- and g;-of partial differentiation are sometimes

3

written as L or'aj and 9 respectively., If J is an index for R" and 3] = x,
J
then the higher partial derivative

ak

09X, 00X, sadd X,

J1 Jp Yk
will be called a partial derivative of order k = |J| and will be written 3>,

1f IJI = 0 the operator BJ is defined as the identity operator.

2, Formal Partjial Differential Operator

If m is a positive integer, an expression
T = 3 a_(x) 37
[T I

where the real coefficients ay are infinitely differentiable functions in an

open set @ C Rn, will be called a formal partial differential operator defined

in  and m will be called the order of Tt.

() = J (-1>JaJ[aJ<3<_> ()]

1Tz m

is called the formal adjoint of t. In particular, if t = 1% then v is called

formally self-adjoint. If

A A J
T= ) a.(x) 3
38 7

is another formal partial differential operator defined in f, then for func-
A
tions £ which are infinitely often differentiable in @, T (tf) is also defined

in Q. This is written

3
b} (x) 37,

">
Ao
i
LI
=34
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Similarly the sum of T and % is defined by
" A A
T T= 73 (a (x) + a.(x)) 2",
A J = J =
| 7| < max(m,m)

=T+

Example VI-1, Let x = (xl,xz,x3), then a particular T can have the following

form:

T = %Jl “ a;(x) 27 = a, (x) 2%+ ay(x) 27 + a, (x) 2% + a;(x) 9 +aj(x) 20=

o & @ 2o ) —2
=a X) —7 =~ a X) —5—— +a X) ~—————p—— +
0,4,0% 4~ #2,1,1%& 0,2,1°% 2
sz 3X123X23X3 3x23x3
+ 22 Yt 2w
35.0,0 & ;‘;2'31,1,0 ('}i)ax o 8q %)
1 1%

Notice that the elements aJ(_:E), 0 _5|J|=< 4 can be zero, as is al(ﬁ). In most

practical applications, gome components of aJ(_g:_), 0 =§|J|=< 4, will be zero.

4
() = T DT a7 fa ()] =ty ey, (] -

7)< 4 3x,
ot 33
- axzax . [a2,l,l(§)(')] - a_x'i_a_;: [aO,z’l(E)(.)]-i'
179%2 %973 2773
52 32
+ 5 [az,o,o(-’i)(‘)] - [31,1,0(-’9(')] + a5 (x).
axl ax13x2

3. Function Spaces Ck(Q) and Cl(;(SZ)

Let Q be an open set in R” and @ its closure. Then the set of scalar
functions f defined on © with all partial derivatives of order not more than
k existing and continuous is denoted by Ck(Q). The set C:;(Q) consists of

those functions in Ck(ﬂ) which vanish outside a compact subset Q' = 5', Q' is
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a proper subset of Q, Thus Cg(ﬂ) c Ck(Q). The set Ck(a) consists of all
functions defined on € having all partial derivatives of orders up to k inclu-
sive at each point of @ and such that each partial derivative has a continuous
extension to @, If this is the case, 3Jf(§) is defined for x ¢ Q and lJl; k
as the extension by continuity of an(i) from Q to Q. We accept cg(§)=c§(n);
if £ ¢ C3(@) = CS(®), thend” £=0ond - 0.

The spaces c”(R) and CS(Q).are especially important;:
4. Norm in C¥(2), c@)

Ck(ﬂ) is made into a F-space (a space which does not satisfy

|loax|] = |a| ||x|] of the previously defined norm properties; | so defined

e
is called a F-norm) as follows. Let Km be an increasing sequence of compact
subsets of Q or . Suppose that K.m is such that any compact subset of

belongs to one of the sets Km. Then for a function £ in one of the spaces

ck(n), k@), place

J
u(f; J,m) = sup | 3 £(x)|
x ek

and define the F-norm of f by

co k .
Nellge= T ) ] == HELD oy
m=l 3=0 |J|=3 22941 1+ u(£33,m)

This norm makes the space into a complete F-space. If k <« and Q is compact,

but not otherwise, the space Ck(ﬁ) is a Banach space under a norm equivalent

to the F-norm such as ||. ICk(ﬁ) = ISTP I 8J°| + It is in the sense of these
J| <k

norms that reference is made to the topology of Ck(ﬁ).
5. Distributions

It is essential to apply partial differential operators to complete

spaces, i.e., to spaces with elements which all possess the necessary
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differentiability requirements in order to carry out all required mathematical

operations properly. Suppose, that the operator

2

3 f
(t1nf) (%) = e
0 3x13 X,

(x) =xc¢ R?

defined for each function f in C; (Rz) is considered., This operator To is
densely defined in L2(R2), the space of all functions f such that |f(§)|2 is
Lebesgue integrable over R"., But Ty is not closed. Let T be its closure,
then D(1) contains nondifferentiable functions. Which non-~differentiable
functions? One might expect the answer to be those (non-differentiable)

functions f such that LI 3 f belongs to L2(R2). Thus one should be able to

1 %
define 3}{ 3 < for every function, differentiable or not, and irrespective
1 "2
of whether 3x: ax f belongs to L2(R2) or not., Such a "derivative" can no
1 72

longer be an element of any space of functions, but can only be a "function"
in some generalized sense, Laurent Schwartz has developed a theory of such
"generalized functions" in his theory of distributions.

Defipnition VI-l, i. Let Q2 be an open set in R"., Let {¢n} be a sequence of

functions in C;(Q) and let ¢ be in C;(Q). Then if there is a compact subset K
of © such that all functions ¢n vanish outside K, and if in addition, ¢n+ ¢ in the

topology of CS(Q) we shall write

¢, 3 ¢ in Q.

ii, A linear functional F defined on Cg(Q) such that F(¢n)+F(¢)

whenever ¢n > ¢ in @ is called a distribution in Q.
iii, The family of all distributions in  is denoted by D(R).

Definition VI-2. Let Q be an open set in R". Let f be a function defined in

Q which is (Lebesgue) integrable over every compact subset of £, then the

distribution F, defined by
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F(o) = [¢ @) £ (@) dx ¢ ¢ Ci@)
Q
is called the distribution corresponding to f,

If a distribution corresponds to two functions f and g, then £ = ¢

almost everywvhere.

Definition VI-3, A distribution F which corresponds to a function f in the

sense of Definition VI-2 is said to be a function, If f is continuous,
differentiable, belongs to LZ(Q), Ck(Q), C;(Q), etc., F will be said to be
continuous, differentiable, belong to LZ(Q), Ck(Q), C:(Q), etc, respectively.
Thus a distribution, which is a functional, is identified with the
function to which it corresponds. The introduction of distributions enables
one, as will be seen later, to formulate a partial differential operator in
a complete function space, in particular a Hilbert space. The following
definition shows how a distribution may be differentiated partially.

Definition VI-4, Let T be a formal partial differential operator defined in an

open subset Q of Rp, and with real coefficients in Cm(Q). Let T be a distri-

bution in Q. Then t F will denote the distribution defined by the equation

(tF) (o) = F(1%9) 6 £Co(2).
The fact that ¢n3¢ implies T*¢ni t%¢ is the justification for this definition.
Additional justification for Definition VI-4 is provided by the statements of
the following lemma:
Lemma VI-1, Let © be a subset of R",
i, If the distribution F in Q corresponds to the function f in C™(Q)
and if 1 is a formal partial differential operator of order at most n defined

in @, then tF corresponds to tf.
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ii, Tt(oF + BG) = atF + BTG T, G eD(Q)

iii, (a Tl + Brz) F= a(TlF) + B(TZF) F eD(Q)

iv. (rlrz)F = Tl(TzF) FeD(Q).

This lemma provides the justification for addition, multiplication by
a scalar, differentiation, etc., of distributions, Additional properties can
be found in (29).
6. The Sobolev Space Hk(Q)

The Sobolev space Hk(Q) constitutes an important class of subspaces of
D(Q), which are at the same time spaces of functions. The following lemma is
elementary:

Lemma VI-2. Let 2 be an open subset of R" and let F be in D(R). Then F is

a function in LZ(Q) if and only if there exists a finite constant K such that
[F)] < xll¢ll,, ¢ eC)
where [|¢|[§ = f¢2 d x with the integral taken in the Lebesgue sense.
Q

Definition VI-5., Let @ be an open subset of R" and let k be a non-negative

integer, Then
i. the set of all F in D(R) such that 3°F is in L2(Q) for all
IJ]: k will be denoted by Hk(Q). For each real pair F,G in Hk(Q) we write
. J J
<F,G> = ] [ (3"F)(®) (3°6) (x)dx
|7k @
and N
_ 1/2
HEl = (< 7,F> 070 (VI-2)
ii. the symbol HE(Q) will denote the closure in the norm of Hk(n) of

the CS(Q) functions.
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Lemma VI-3, Let Q be an open set in R™. Then the space Hk(Q) of the
preceding definitions is a complete Hilbert space, and the space Hg(n) is a :
closed subspace of Hk(Q). Moreover:

(@) = H(2) = 12(@) i

@) ¢ #@) k>0
Hy' (@) ¢ Hp(2) k > 0.

Lemma VI-4, Let T be a formal partial differential operator of order k and
let j > k. Let Q) be a proper subset of @, an open set in R, such that §0 is
compact and let aJLg) belong to Cw(Q), then F+tF where FeHj(QO) implies :
tFe Hj-k(QO) and the mapping is continuous.

F e Hg(ﬁo) implies TF € Hg-k(ﬁo) and the mapping is continuous.
7. Sobolev Imbedding Theorem

Definition VI-6. Let p be a point of the subset A of R™, Then A is said to

be smooth in the vicinity of p if there exists a neighborhood U of P and a

mapping ¢ of U on a spherical neighborhood V of the origin such that
i. ¢ is one-to-one, ¢ is infinitely often differentiable, and ¢—l is
infinitely often differentiable,
i, ¢(AV) =VN1{ixe R'|x =0k
If the set A is smooth in the vicinity of each of its points, it is

said to be smooth, or to be a smooth surface,

Theorem VI-1. Let @ be a bounded set in R”. Suppose that 92 is a smooth

surface and that no point of the boundary of Q is interior to Q. If 2k > n
and 0 <m <k - %-then every derivative of order not more than m of the
distribution F € Hk(Q) is continuous and the imbedding operator from Hk(Q)

into Cm(Q) is bounded and completely continuous,
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8. Differential Operator Representation

In order to apply the stability theorems of Chapter V, the formal
partial differential operator must be extended to be defined in a Hilbert space,
i.e., in a complete normed linear space, with the norm induced by an inner
product, The important requirement is that the space of differentiable func-
tions is complete, i.e., that the operator, its domain and its range are
defined in such a way that all required formal mathematical operations are
valid within the setting of the space.

Let T be a formal partial differential operator defined im a domain

of Rn, then TO(T) and Tl(r) will denote the operators in LZ(Q) defined by the

equations
D(Ty (1)) = Co(@) 5 T (a)f = <f £ eD(T,(0)).
D(r (1) = {f € D@ £eL2(@), trel’ (@)} (VI-3)
Tl(r) f=1f f e D(Tl(T)).

Then by Definition VI-1 there follows that Tl(r) = (TO(T*))*. Thus by Corollarwv
I11-1, Tl(T) is a closed operator in LZ(Q). Moreover by Lemma VI-1 TO(T)Q Tl(T)
is a closed extension of To(r).

Thus Tl(T) operating on an element of D(Tl(r)) ¢ LZ(Q) will result in
an element in LZ(Q). LZ(Q) is a complete linear space. The proper Hilbert
space setting is obtained by defining a norm, fl-l[Lz = II-IIO, on L.2() based

on the inner product:

< f,g> = f fgdx f, g € LZ(Q).

0 a =
and el = (< £,8500 Y2, (VI-4)
In order to derive the unbounded operator A from Tl(r) a domain and

range in the Hilbert space LZ(Q) must be specified. The requirement of the
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existence of bounded derivatives and the necessity for a proper adjoint
relationship for A in the Hilbert space setting dictates a linear subset of
LZ(Q). These requirements can be met by specifying the domain as a Sobolev
space,

For a formal partial differential operator, this could lead to a

specification for A as: the operator in the Hilbert space LZ(Q) defined by:
_ k 2k
D(A(r)) = D(A) = D(T, (1N H (DN B (@)

Af = Tl(r) £ , £ e D).
Under these conditions R(A) will also be in LZ(Q).
Another way of achieving the adjoint relationship for A is by defining
generalized derivatives in the sense that integration by parts formally carries

through(Bo)

. In both cases it places restrictions on the values of the
distributional derivatives or derivatives on the boundary. Thus if 0=0 +5 Q
has a sufficiently smooth boundary, 3 2, then the space HE(Q) has (distribu-
tional) derivatives up to order k-1 which approach zero as the boundary is
approached in Q.

A more detailed discussion concerning this formulation of differential
operators in the appropriate spaces can be found in Dunford and Schwartz(zg).
This development allows us to apply the stability theory developed for operator
differential equations in Chapter V to a class of partial differential equations

that can be placed in the above Hilbert space setting.

B, Selection of Norms
i
It has been pointed out that stability is defined with respect to a
norm, However, it is obvious that in formulating the particular stability

problem the norm cannot be chosen at random. In many instances one is able

65




to select a norm in a natural way by considering the physical properties of the
system. This leads for the wave equation to a consideration of the energy

which provides as the natural norm the L?-norm as defined by (VI-4) i.,e., a

Hilbert space setting.

One the other hand, for the heat equation the natural norm is given by
the supremum of the temperature, thus (VI-1) with J = 0, Other examples can
be given where the natural norm is not induced by an inner product or does not
satisfy the parallelogram law.

The stability theory is based on the Hilbert space theory of dissipa-
tive operators, the generators of contraction semi-groups or groups. Thus the
Hilbert space structure is essential for the stability theory.

The specific problem considered here concerns stability with respect
to Hilbert space norm. Whenever the natural norm does not correspond to an
inner product one can only draw conclusions about the stability properties
with respect to this norm if it is equivalent with the particular Hilbert space
norm for which the stability is determined,

The role Sobolev's Imbedding Theorems might play in relating stability
properties under different norms, not necessarily equivalent, is suggested for

future research,
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VII., STABILITY OF AN EVOLUTION EQUATION

In the previous chapter it was pointed out that in order to define:&
as an operator on a complete space, it is necessary to introduce distributions.
A is then defined on some Sobolev space. ;ﬁ is thus associated with generalized
functions and the conditions for stability of the solutions of (V-1) must be
interpreted as stability conditions for the distribution solutionms.

The Sobolev Imbedding Theorem makes it possible to determine if and
when the stability properties can be extended to the Cj-norms.

The Dirichlet boundary value problem for strongly elliptic partial
differential operators will be studied to demonstrate thisg -development. Section
A 1s devoted to some basic properties of strongly elliptic formal partial
differential operators. The basic theorems concerning the formulation of ﬁhe
Dirichlet problem in the distribution sense conclude this section.

The actual stability problem is solved in Section B.

A, Elliptic Partial Differential Operator

Definition VII-1, IlLet

J
T = z a.(x) 3
1Fle T

be a formal partial differential operator of order p with real coefficients

defined in a domain © of Rp. Then if for each nonzero vector Ee R" we have

‘§‘=p a;(x) EF # 0 X e Q

the operator t is said to be elliptic.
The boundary value problem to be discussed considers the strongly
elliptic partial differential operators, i.e., those operators of even order

for which Garding's Inequality holds.
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Lemma VII-1l, Let T be an elliptic operator of even order 2p with real

coefficients defined in a domain QO of R". Let Q be a bounded open set such

that §°C Q;. Let
t= ] a@a’ (VII-1)
|31s2p
and suppose that
-D? § a @ >0, xen), E#F0, £k (VII-2)

Then there exist constants K <= and k > 0 such that

< 'rf,f>0 + K< f,f>0

v

k ||f||§ f e cg(n), (VII-3)

or <(t +KI) £,£>

12
02 k ||f||p. For R=0 we get

v

2
< 1,85 2 k| £]]] = k< £,85

or <=tf,f>5 <=k < f,f>p <= k< £,£>,.

T is called strongly elliptic and (VII-3) is known as Garding's

Inequality,

The next step is to specify a differential operator for t1(still without
boundary conditions) which later might be a candidate for the closed extension
of an operator associated with the Dirichlet problem. Tl(r) is the closed
operator defined by (VI-3).

Theorem VII-1, Let t be an elliptic formal partial differential operator of

even order 2p, satisfying the hypothesis of Lemma VII-1, and defined in a
bounded domain 2 in R" which satisfies the hypothesis of the lemma. Let
T = T(1) be the operator in the Hilbert space LZ(Q) defined by the equations

D(r(v)) = D(T) = D(T, (x)INHY (@)  (VII-4)

Tf = T, (1)F, £ € D(D).
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Then o(T), the spectrum of T, is a countable discrete set of points with no
finite limit points and for A ¢ ¢ (T), R(A; T) is a compact operator.

The restriction of the domain of T to a subépace of the domain of
Tl(T) by (VII-4) makes R(A; T) a compact operator.

Corollary VII-1l, Let the hypotheses of Theorem VII-1 be satisfied, Then there

exists a constant K < « and a constant k > 0 such that

<TE,f> + K < £,85) 2 k ||f||§ , £eD(T) (VII-5)
The next step is to specify the adjoint,

Theorem VII-2, Let 1 be an elliptic formal partial differential operator of

even order 2p, defined in a bounded domain 2. Suppose the hypotheses of Lemma
VII-1l are satisfied, Let T and S be operators in the Hilbert space LZ(Q)

defined by

D(T) = D(T, ()N HY(@), D(S) = D(T, («*) )N HY (@)

Tf = Tl(T)f, f eD(T); Sf = Tl(r*)f, £ eD(8).

Then T = S* and § = T%,

Moreover we have thus < Tf, g>; = < £, Sg>, for any f ¢ D(T) and

0
g e D(S).
The Dirichlet problem can be formulated as follows:

Definition VII-2. Let 9 be a domain in R" whose boundary 3R contains a part

I which is a smooth surface. Suppose that no point in T is interior to Q .
Let k be a positive integer, Then if f is in Ck-l(ﬁ) and an(g) vanishes for
all x € T and all J with |J| <k - 1 we will say that f satisfies the
Dirichlet condition of order k on T or that £ and its first k-1 normal

derivatives vanish on I' and we write:
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0, N @ =0 xer, 05 5kl (VII-6)

Remark: The subscript v in the preceding formula indicates the derdvative in
the direction of the normal to I'. If I' is a closed rectangular (n-1)~dimen-
sional hypersurface in R" with side Fi perpendicular to the xi-coordinate axis

then (VII-6) becomes

)
[ 3]
Hh
N
»
~
o
T
(3
A
-
1
[}

@
L
H

1PN
(XN

A
o]

The following theorems will identify the operator T with Dirichlet
boundary conditions with an appropriate operator A defined on distributions and
thus closed, The notation T(t) is used for the operator in the Hilbert space
LZ(Q) defined by the equations

D(T(r)) = B (@)N 12P ()

(VII-7)
T(t)f = 1f 3 £ € D(T(1)).

From Theorem VII-2 and the fact that HB(Q)(\HZP(Q) is a dense subset

of LZ(Q), it follows that T(t) is a closed operator,

Theorem VII-3, Let T be a strongly elliptic formal partial differential opera-

tor as given by (VII-1) and satisfying (VII-2)., Let Q be a bounded subdomain

Q c 90. Let 3Q be a smooth surface and let no point ind @ be interior to the
A

closure of ., Let T and T be operators in the Hilbert space L2(Q) defined by

the equations:

D(T) = D('T\) ={feC@ | £x) =
(VII-8)

=5 ,(30) £(2) = ... =227 (20) £() = 0,x €20}

A A
Tf = tf , Tf = 1%f, £ e D(T) = D(T).
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Then let W and ﬁ denote the operators whose graphs are the closures of the
graphs of T and % respectively, Then

i, owe=U . D = W.

ii. o(W) is a countable discrete set of points with no finite limit
point,

iii, If A ¢ o(W), R(A; W) is a compact operator.

iv. If A ¢ o(W), R(A; W) is a continuous mapping on H (2) into
ﬁm+2p(9) for everym > 0 .

v. If Wf is in H'(Q) and if m > (%] - p, then f is in cp'l(s‘z) and f

satisfies the boundary conditions defining D(T) stated by (VII-8).
([+] means largest integer, [5-%] = 5),

The operators W and ﬁ are identical to the operators T(r) and T(t*) as
defined by (VII-7) respectively, W and G are closed operators. The properties
of the resolvent of W are indicated in (iii) and (iv).

In the case where 1 = 1% a more gxplicit result follows from the
theorem:

Theorem VII-4, Let T be a strongly elliptic formal partial differential opera-

tor as given by (VII-1l) and satisfying (VII-2). Let @ be a bounded subdomain
Q c Qo. Let 3Q be a smooth surface and let no point in 3Q be interior to the
closure of Q and let © = %, Let T be the operator in Hilbert space LZ(Q)

defined by
() = £ @] £&@) =2 6 £x) = ... =
2Pl (30) £(x) =0, x e 20 (VII-9)

Tf = ©f , £ €D(T).
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Lef W be the closure of T, then
i. The operator W is self-adjoint.
ii. The spectrum o(W) is a sequence of points {An} tending to =, and
for A in p(W), R(A; W) is a compact operator.
iii. The operator W has a complete countable set {¢n} of eigenfunctions,
Each eigenfunction satisfies the partial differential equations

T ¢

n An¢n in @, has infinitely many continuous derivatives in
the closure of the domain 2, and satisfies the boundary conditions
defining D(T) of (VII-9).

The results of this theorem are important for the wave equation problem

~ of Chapter VIII,

B. Stability of the Solutions to an Evolution Equation with

Strongly Elliptic Partial Differential Operator

The Dirichlet boundary conditions appear in a large class of boundary
value problems for elliptic partial differential operators. In stability
investigations of systems represented by partial differential equations, the
stability analysis is generally carried out for systems perturbed from
equilibrium, In this case one can often introduce zero boundary conditions.

The formulation of the general conditions for the stability and
existence of solutions to the class of strongly elliptic partial differential
operators will cover a large class of systems.

Consider the system as formulated by (II-1), thus

du
a—E-—Lu—-Tu (VII-10)
where T is now a time-invariant strongly elliptic formal partial differential

operator of even order 2p with real coefficients defined in a domain g of Rn,
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=) a (x) 2", (VII-11)

Then in any bounded open domain 2, such that § ¢ QO’ Garding's Inequality holds

for all u ¢ CS(Q):

< Tuy,u>, + K< u,u>, > k < u,u>p (Vii-12)

0 0
for some K < = and k > 0.

Next we want to associate with L and thus 1t a Dirichlet boundary value
problem., Hence let 2 be a bounded subdomain of QO with Q interior to QO. Let

392 be a smooth surface with no point of 3  interior to Q2. Then (VII~10)

defines an operator differential equation

9-5% ==Tu, ueD(T (VII-13)
V() = {ue C@J| u =3v( AU = ... = ag'l(asz) u=0; x €30} (V1I-14)

Tu=1Tu3j ue (D).
The stability theory developed in Chapter V cannot be applied to
(VII-13) even though it is an operator differential equation., In order to
get (V-1) T must be defined on a complete space with suitable norm. Introduc-
tion of distributions and Theorems VII-3 provides the appropriate differential

operator W, the closure of T with respect to LZ(Q), as

WEf=nf s £ e DWW
W) = Hg(ﬂ) N w2 c 1% (2). (VII-15)
And the corresponding operator differential equation becomes
d f
d

“Sr=-WfE feDW). (VII-16)
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Furthermore R(¥) c LZ(Q) and since HS(Q) is dense in Lz(ﬂ) 5?&) = LZ(Q), thus
(VII-16) is an operator differential equation, associated with (VII-10), which
belongs to the class (V-1).

Theorem VII-3 enables us to define the adjoint of W, W¥, as the
closure % of @ where D(T) = D(S) and % u=71t*u foruce D(%). Since T is
strongly elliptic t* will also be strongly elliptic, thus satisfying Garding's
Inequality for u e Cg(Q). Replacing T by 1% in Theorem VII-3 gives
D) = D(u*) = HS(Q){)HZ%Q) = D(ﬁ). This is an important property, to be used
in the following stability theorem. Notice that if D(W) = D(W*), then W is
self-adjoint if T = 1*

It should also be noted that the imbedding of the closed subspace

HB(Q) in LZ(Q) implies that there exists a constant C > 1 such that

< f,f>p >C < f,f>0 for all f ¢ Hg(Q). (VII-17)

Theorem VII-5, Let T be a strongly elliptic formal partial differential oper-

ator as defined by (VII-1l), satisfying the Garding Inequality (VII-12)., Let
T of (VII-14) be the operator associating T with a Dirichlet boundary value
problem, and let W be the closure of T as defined by (VII-15).

Then the null solution of

df_ _us £ e D) = B (@N #2P)  (VII-18)

is asymptotically stable with respect to the L2-norm if a C0 > 1 can be found

such that
2 2
i. el 2 GlIl g £ e D(W) (VII-19)
and
ii, C.k-K>0 (VII-20)
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where k and K are two constants satisfying Garding's Inequality for t.

Proof: Define the symmetric, bilinear, positive definite functional V(f,g) by

V(f,g) = < f,g> for £,g € L),

0
The Lyapunov Functional v(f) is thus defined by

V(E) = V(E,£) = < £,65 ¥ £ e L2(Q).

0
Then V(f) = 2V(-Wf,f) = 2< -Wf,f>O feDW). (VII-21)

Since 1 satisfies (VII-12) we have by Corollary VII-1:

< WE,£>5 + K< £,£>5 > k < f,f>p ¥ £fe DWW
and with (VII-19):
< IJf,f>0 > (Cok - K) < f,f>0 Y £feDW (VII-22)
W is closed, and so is -W, D(W) = D(-W) = LZ(Q).
Since D(W) = D(W*), it follows from (VII-22):
< W*f,f>0 = < £,WE>) = < WE, >, > (Cok - K) < f,£>, (VII-23)

for all £ € D(W*) = D(W). For (Cok - K) > 0sW is a one-to-one mapping from

Hg(Q) N 12P(Q) into L7(Q) and R(W) is closed. Hg(ﬁ)n 1P (@) is reflexive'?>),

L
thus W* maps HB(Q)ﬂ HZP(Q) into LZ(Q) and since N(W¥) = R(W) , the annihilator
4
of R(W) in LZ(Q), it follows from the closedness of R(W) that R(W) = N(W*)
However, by (VII-23) also W* is one-to-one and N(W*) = {0} , thus R(W) = LZ(Q).

Substitution of (VII-23) into (VII-21) gives

V(£) = 2 < -WE, >

g 5 -2(Cok - K) < f,f>0 ¥f e D(W).

(VII-24)

Thus for Cok-K > 0 the operator -W with D(-W) = LZ(Q) is strictly dissipative

and R(I+W) = LZ(Q). Hence by Theorem V-5 the Lyapunov Functional v(f)=< f,f>0

assures the asymptotic stability of the null solution of (VII-18). Moreover,
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-W generates a semi-group Ezt 3 t>0}in LZ(Q) with
{

< e—at

T
v
o
-

Nzl

where o = Cok-K.

In the stability analysis the objective becomes thus to reduce <—Wf,f>0

The choice of the maximal C., which satisfies (VII-19)

(31)

to the form - a< £,£f> 0

are available to facilitate this

0°
is very important., Integral inequalities
reduction. These integral inequalities are to some extent based on an estimate
of the eigenvalues., In Chapter IX it will be shown that a proper selection of
v(£f) can improve considerably the effectiveness of the use of these inequalities.

A special case arises when T = 1%, Then it follows from Theorem VII-4
that the spectrum of W, uniquely determined since W = W%, is a sequence of

points {)_} tending to =, Let A be the smallest XA_;.then
n min n

i

A, < £,£>0 < <WE,£>, ¥ fe D(W).

min 0

Thus, if Am > 0 we get

in

0 S~ Amin < f,f>0 <0 ¥ feDMW

< - WE,E>
and -V is strictly dissipative. However, the determination of the eigenvalues
is generally not easy, especially when the coefficients of 1 depend on the
system parameters. In many such cases integral inequalities might be used more
easily,

The question can be raised if similar results can be derived for the
asymptotic stability of the null solution to (VII-16) with respect to the -
norm. This question becomes important when the Sobolev Imbedding Theorem is
used to deduce stability properties with respect to a Cj—norm.

2m

From Theorem VII-3 follows that the closure of T in H is W For

2n’
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Garding's Inequality to hold in Hzm(Q) it appears that D(Wzm) must be

restricted to
@i, ) = B (@) n 1P M e)c 12 (o)
m 0 =
and giving for all £ e D(VW, )
< mef’f>2m + K< f’f>2m >k < f’f>2m+p' (VII-25)

This gives rise to the following conjecture:

Conjecture VII-1. Let W, be the closure of T, as defined by (VII-14), with

respect to Hzm(Q). Then the null solution of

d

Hh

|

= - _ ppim 2p+2m
il w2m f fe D(WZm) HO @NHu Q)

[a

is asymptotically stable with respect to the Hzm-norm if there exists a

sz > 1, satisfying
i 11E11%., > ¢ |1£] 13 ¥ f e DOV, )
¢ pt2m = 2m 2m 2m

and

ii. C k-K>20
2m

where k and K are the constants satisfying Garding's Inequality for T.

The derivation of this result is analogous to the proof of Theorem
VII-5,

Then for sufficiently large Z2m > [%; + j + 1 it follows from Sobolev's

Imbedding Theorem that f € Hzm(Q) implies £ eCj(ﬁ) and

Hfllcj(g) = CHszm

where c is a positive constant,
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However, for some initial function foe D(Wzm) = Hg+m wn H§p+2m(QL'r f

remains in D(WZm) for t > 0(23),_Et is the semi-group generated by Wzm. Thus

for sufficiently large 2m ;[%J - 2p + j + 1 it follows by Sobolev's Imbedding

Theorem, that.Etf € H2m+p(9) impliesirtfo € Cj(ﬁ) and

0

I follci@y 5 1l Tefol lonsop
where ¢y is some positive constant., Thus any asymptotically stable semi-group
2mi+-2p . iz
trajectory in H (?) should be asymptotically stable in C°(Q).

Next consider as a specific example a diffusion equation

2
du _ 28 _pyu; t>0 (VII-26)
3t 3x -

where ¢ is a positive constant and b is a constant, 0 <x < 1. Assume the
boundary conditions to be u(t,0) = u(t,1) = 0, (VII-26) is thus formulated as
the Dirichlet boundary value problem for a second order partial differential

equation defined on [0,1] of Rl. The results are compared in Chapter VIII

2
with those obtained for the case where L = =¢ %_2 + b is taken in the wave
9 X

equation representation.

2
Here T = -c;i-—-+ b = 1% is a strongly elliptic formally self-adjoint
3 x

partial differential operator defined on [0,1].
(VII-26) is associated with the closed self-adjoint operator differen-

tial equation of class (V-1):

df _ _
Se=-Vf £ e D(W)

D(W) = H3([0,11) N K ([0,11) (VII-27)

WEf=nr1f feDW.

8
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Take as Lyapunov Functional:

v() = < £,850 = ||£]|2 £ e D@

evaluating v(£) on the C;([O,l]) functions

1 .2 1
. _ _ 3 °f _ 2 _ 3f.2
V() = 2< Lf,f>; = 2 g{c?;§7 « £ -b £} x = =2 é {e (5D +
+b £2} d x
This last expression can be reduced with the intégral inequality(31>
1 1
/ G%JE)Z dx>72 | £ 4 x
x =
0 0
to
2 1 2 2
v <=2 +b) [£f°dx==2(ca” +Db)< £,£> .
B 0

A sufficient condition for the asymptotic stability of the null solu-
tion of (VIII-27) is thus
c “2 + b >0,
Or since for the strong ellipticity of 1,c > 0 is required:
c>0 and b > - ¢ nz.

0} in L2([0,1]) which is bounded by:

v

Thus -W generates a semi-group { T, 3 t

Iz, Iy < oo ¢

where o =b+ 71" c.

v

0,

The results obtained are identical to those obtained by evaluating the
eigenvalues of ~t, These are

)\n=b+cn2‘tr2 (n=+1,
Negative b are allowed as long as b > ~c wz, since c (Q%;

i 2, o.oo)
2

+ bf% = 0, implies

@

for £(0) = £(1) = 0 that £ = 0 is the only solution.
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VIII. STABILITY OF WAVE EQUATTIONS

In this chapter the stability properties of an important class of
partial differential equations will be investigated. Wave equations appear
frequently in the mathematical representations of physical systems, The
development of a Lyapunov Functional for this system is sketched in Section A,
Specific applications are given in Section B. The formulation of the Lyapunov
Functional and its derivative show that the system possesses the group property
rather than the semi-group property, and thus necessary and sufficient condi-

tions for stability can be established.

A, Development of a Lyapunov Functional
The following formal derivation of a suitable Lyapunov Functional,
not mathematically rigorous, constitutes an important step in solving the
problem of asymptotic stability for the wave equation with Lyapunov's Direct

Method, Let us consider the simple wave equation

2

2
a;+a-a——u-+bu-ca—-92-=0 (VIII-1)
3t 3t X

with a, b, and c positive constants, Let x be normalized to the interval
{0,1] and assume u(t,0) = u(t,1) = 0, Under these assumptions one expects
the null solution u = 0 to be asymptotically stable., However, if the total
energy of the system is chosen as Lyapunov functional

1
_ 3u 2 2 Ju,2 _
v(u) = é {( a_t) + b u” + c( a_x) }d x (VIII-2)

then, with the assumption that the derivative can formally be determined:

1
V(u) = -2a | (aibz d x.
0 It

Since v(u) is only negative semi-definite, the null solution u = 0 is assured

to be stable but not asymptotically stable,
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A similar result follows if one interprets (VIII-1) in the context of

a dissipative system (24). Here (VIII-1) is written as ;
9y
sE-Lu
with
( ) / \
Vb u 0 0 Jo :
u = 9
JE Ux s L= 0 0 JE 3x ;
2 ;
[ Yt J § 71; JZ 3x @ ’

/
Thus the choice of (VIII-2) as Lyapunov Functional is apparently not
the correct one for showing asymptotic stability, The problem is to select a
Lyapunov Functional v(u) with a negative definite time derivative,
The procedure for the construction of such a Lyapunov Functional
follows to some extent the construction of Lyapunov functions for systems of
linear ordinary differential equations(z).
Notice that (VIII-1) can formally be solved by a separation of vari- E
ables argument(sz). Putting u(t,x) = T(t) X(x) (VIII-1) can be replaced by

the system of equations:

2
g—% + a 22-+ AT=0
dt dt
and (VITI-3)
2
c*g—§-+ bX~-AX=0
2
dx

and boundary conditions X(0) = X(1) = 0.

Fia

Suppose that the second equation of (VIII-3) is solved and a*} = Al

is determined. For this particular example A, will be real, because the

1

differential operator is self-adjoint, Substitution of Al in the first equa-
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tion of (VIII-3) gives:

alr aT

+a—-——+ 2. T=0.
at? e 1
This is a second order linear ordinary differential equation with real

coefficients that can be written as:

a1 .
dt ~— "2
or dI
R
d T,
& - " MTp-2aT,

The construction of a Lyapunov function for this system follows the usual

procedure, Let

V@ =1 P I

where P is symmetric and.IT denotes the transpose of T then

d v(T)
—— =T @' p+ERI=-1 0L

The system is asymptotically stable if for a positive definite symmetric mat-

rix Q, P as a solution to the matrix equation

is uniquely determined by Q and is positive definite symmetric when Q is.

Q is usually taken as the identity matrix. Here the objective is, however,

2
to identify Al with L = - ¢ 3 > + b, and v(u) and ¥(u) should become
9 X

quadratic forms which are equivalent to the same norm, or can be reduced to

equivalent norms. Thus let

1o
]
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then P follows as
2A1 +a”, a

_P.=

N

a
The next step is to interpret P and Q in terms of L. The first

consequense is to write (VIII-1) as

du
& - Le
where
uy u 0 ’ 1
-1_1 = = H L =
u, u, ~L N -a .

Next v(u) must be patterned after V(T) = _? P T by replacing A, with L and at

the same time taking the Lz-inner product. Thus

1 T 2L + a2 , a
v(u) = f_g u dx (VIII-4)

0 a ’ 2

Integration by parts and substitution of the boundary conditions gives

1 du
- 1.2 2 2 2
v = — -
(u) é {2 c( 5 >+ 20 uy +a” uy 4+ 2 a uu, + 2 uz}d x, (VIII-5)

With a, b and ¢ > 0, (VIII-5) is equivalent to the norm of the product space

Hy(10,11) x Hy ([0,11).

d v(T)
For the case of self-adjoint L, ¥(u) can be related to ——Eé:—— .
In this particular example
1 1 du
v@w) =-2a [u |L Oludx=-2a] {ccd?+bu®+ v} x. (VIIT-6)
0 o 1™ 0 9 x 1 2

Thus V(u) is equivalent to the norm of the product space Hé([o,l]) X Hg([o,l]).
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For nonself-adjoint operators L (VIII-5) can still be taken as Lyapunov
functional, but V¥(u) must formally be evaluated. An example is the panel
flutter problem analyzed by Parks(16). The Lyapunov functional derived by
solving a variational problem is exactly equal to (VIII-4) with L replaced by
the appropriate differential operator,

The Lyapunov Functional developed above enables the formulation of the
stability problem for the wave equation in terms of the hypotheses of Theorem
V-6, Hence we are able to show not only that the solutions are asymptotically

stable but exist and satisfy the group property.

Some applications are given in the following section.

B. Application to a Class of Elliptic Partial

Differential Operators

Consider the general system equation:

azu au
- +a—+Lu=0 (VIII-7)
2t 3t

with a constant a > 0 and L = T is a strongly elliptic partial differential
operator of even order 2p with real coefficients defined and uniformly bounded

in a domain Q. of Rn:

0

t= 1 a @, (VIII-8)
17]s2p

and let 1 = t#, Then in any open bounded domain £ such that 9 c QO Garding's

Inequality will hold for all u € cg(g):

< Tu,u>, + K<uy,u>, > k<u,u>p (VIII-9)

0 0

for some constants K < « and k > O,
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With L is again associated a boundary value problem, Thus @ is a

0 with Q interior to QO. Let 99 be a smooth surface

with no point of 3 @ interior to {. Then t defines a differential operator T

bounded subdomain of @

such that

() = {ue @ [u=5 69 u=..02 (30)u=0u a0

Tu=7tu 3 uel(T) (VIII-10)
T is again not defined on a complete space. 1In order to get the proper
differential operator we introduce distributions and let, by Theorem VII-4, W

be the closure of T with respect to LZ(Q) so that W is self-adjoint

() = B2y N 1P (@)

(VIII-11)
WE=qxf : £eDW.
And the corresponding operator differential equation
s _af
—ta——+WEf=0 f e D). (VIII-12)
dt dt
From Corollary VII-1 it follows that for all £ eD(W)
<W f,f>0 + K < f,f>0 >k < f,f>p. (VIII-13)

Then (VIIT-12) can also be written as

d £
~z = WE D =u5@N 1P (@) x HD (2) (VIII-14)
where
/ \ / N\ ( w
fl f 0 1 ‘
f =
- N 3 W= (VIII-15)
£, £ -0 -a
~ 2/ . t) \ Ve
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Since

£
Wf= 2 then R{W) = Hg(Q) x R(W),

W f1 - a f2

Theorem VIII-1. Let W(VIII-1ll) be the closed self-adjoint differential

operator associated with the Dirichlet boundary value problem for the strongly
elliptic formlly self-adjoint T as given by (VIII-8), then the null solution,

£ = 0, of the system

d £ 0 1

= £=U£ ;DU = H@N BP(2) x Hp (2) (VIII-16)
dt -W -a

is asymptotically stable if a > 0 and if there exists a C0 > 0 satisfying

. 2 2
io {15115 2 el G £, € D(W) (VIII-17)

and

ii. k-5 ¢e>0 (VIII-18)
Co

where € > 0 and k and K are the constants satisfying Garding's Inequality for

T (VIII-9). [ generates a group of exponential type in HB(Q) x Hg(Q).

Proof: As the derivation in the preceding section shows, define a bilinear

functional

N

2
A co
V(i’.g.) = Z < f” pij gj>0 fi’ gj > Co(Q)
J=

i=1 §=1 *

with 2
P = :
Since the coefficients of L are uniformaly bounded on @ there exists a constant
kl > 0 such that by Schwarz's Inequality:
£,, 8, € Gy )

I< fla L g1>0| :klllflllp ”glllp
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and

A
2
V() |5 2 k[ 1£ 1] ey I1 +a"l1gy g Tegllg + 2 HEg 1y Tleyllg

+ aIIleIO Ilglllo +2||f2|10 llgzl|o

+4

2
s g+ a0 [l Tleg |1, + allg5] 1) Tleplly + allgyllg Heglly
+ 2 lllelo llgzllo

<2k gyl NIl + 115511 sylly + Gllgg]l +

+11g,llg ¥ Callsg Il + Hleyllg 3

<OV e L]+ 11E, 1 302k Tyl + eyl 3+
+ Callggll + 15l 3 Callegll) + Heyllg )

< [{max( y/EEl,l)}z + {max(a,l)}z][llflllp + lllelollllglllp +

g, 1]

where we have used the fact that
llflllp 2 ||fll|0 andl'glllp 2 ||gl|I0 .

Next let k2 = {max(\/Zk ,1)}2 + {max(a,l)}z, and take the square on both

sides of the inequality sign:

A 2
Vem 12 <5 Uil + 1151y 2Uleyll + eyl 2

2 2 2 ; 2,
=k U1gg 115+ 2l1E [, T1E, 1o + T1Ey g Yley [15 + 2Hleq 11, Tleplly +

g, 112 3
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1 b2)

with the inequality:
2la b| < (v a2 + v

which is valid when v > 0, there follows
A
2 2 - 2 2
VD12 <15 1o+ DIlg 12+ an™DIg, |12 ] lg 112 +

+ @D g, l120
2

o Hells o -

fmax(v+l, v 112 ||| llz,

NN

= k
Thus for D > k, max (v+1, l+v_l) > 0 there follows
A
Feol = ollell o sl

0 denotes the norm induced by the inner product:
J
gy *f, - gz}d x

where |[°||
< f,g> 0=f{z anl-B
PToa |dlse
for all f,g in CO(Q) x Cy Q).
A 2
Furthermore V(,f) = 2 < fl’Lfl>Q + a"< fl,fl>O +
+ 2a< fl,f2>0 + 2«< f2,f2>0 fe CO(Q) X CO(Q). (VIII-19)
With Garding's Inequality (VII-9):
A 2
V(E,£) > 2k < £15817p = 2R< £1,6,>5 + a” < £,,f1>,
b + 2a < fl’f2>0 + 2«< f2’f2>0 fe CO(Q) x CO(Q).
And with (VIII-17) and (VIII-18)
. \ )
V(£,£) > 2 ¢ < fl’f1>p + a“"< fl’f1>0 + 2a < fl’f2>0
£ e Cy(2) x Cy(R).

+ 2«< f2’f2>0

88



Thus with € > 0 and a > 0 there exists some constant d > 0 such that

A 2 © o
V(£,£) > d||_f_||p’0 for all £ € Cy(R) x Cy(R).
A P 0
By continuity V(f,g) can be extended to all of HO(SZ) X HO(Q) = H(Q).

A
Ve = V| <DlIEll llgll o £z @ (v111-20)

P,0 =
and V(E,£) > d||_f_||§’0 £ ¢ H(@Q) (VIII-21)
Then by the Lax~Milgram Theorem there exists a symmetric, positive definite,
bounded operator S eL(H,H) such that

V(f,g) = <£,8 g>y = <S8 §, &y £, g e H(Q).

For functions f,g € D(W) C H, since W is closed extension of L in H

with domain D(W) = Hg(ﬂ)n H2p (Q) it follows from (VIII-19) that

2
V(i:'_,)=<fl, (2W+a)gl >0 +<f1,ag2>0+
+ < f,, a gyt < £, 2g2>0. (VIII-22)
Let v(f) = V(£,f) = <£,8 £y for £ e H(Q) (VIII-23)

Next we evaluate ¥(f) = 2V(l/ £,f) for £f ¢ 'D((l). Notice that actually
(VIII-23) must be taken for V(£,f). V(f) can be taken as (VIII-22), if the

proper restrictions are placed on W, so that V([ £,£f) = V(f, W £), Taking

first
_ 2
VW £,£) = 2 < f2’ W f1>0 + a“< j:'?_,f1>0 +a < fz,f2>0 -
2
-a <W fl,f1>0 -a < f2’f1>0 -2<V fl,f2>0 - 2ac< f2’f2>0 =
=-a <Wf,f> - a<f,f,> £ e D{W).
Next take
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V(_f_,ﬂ£)=-a<f WE>, + 2<f. W Ef. > +a2<fl,f2>0-

1 10 1 270
2
-a < fl,f2>0 -2 < f2, W f1>0 + a< f2,f2>0 - 2a < fz,f2>0 =
= -a< £,W £,50 - a < f,,f,> fe D)

if W is self-adjoint. Since

k< fl’f1>p > <W fl,fl>0 > € < fl,f1>P fle D (W)
then, for any a > 0,
—e |1£]1% . < W) = 2vW £,8) < -E||£]] £ eD(W)
— p’o = "— — e’ = = p’o — -—

for some constants e and E, e > E > 0, Hence there exist some constants

<]

a=§>0ands=3>o,a>e>osuch that

- WV(E,E) < V(E) <- B V(E,D) £ e D(W) (VIII-24)

In order to apply Theorem V-6, there remains to show that R(A I - W) = HB(Q)
X Hg(Q) for real A and |A| sufficiently large. Take any vector
g = col(gl,gz) in HS(Q) X Hg(Q), then we must show that for |A| large there

exists an £ € HE(Q)[) Hzp(n) X Hg(n) such that (A I - () £ = g. Thus let:

- f = P 0
AE - £ e Hy(2) C Hy(Q)

1~ %278
0
1% fl + (A + a) f2 =8, € HO(Q)

since £, ¢ Hg(Q), f. e Hg(ﬂ), thus substitution of f2 in the second equation

2 2

gives

_ 0
WE)+ 2 (A + a) f1 = (A + a) g+ 8 =8¢ HO(Q).

For ]A[ sufficiently large A(\ + a) is always positive for A > 0 and X < O,
In Theorem VII-5, it has been proven that R(W) = Hg(Q). From the statements
of the theorem it follows that R(W + x(A + a)I) = Hg(Q) for |A| sufficiently

large. And thus R(A I - ) = Hg(Q) x Hg(ﬂ) for |A| sufficiently large. Thus
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by Theorem V-6 () generates a group of exponential type ﬂgt; t e (~o,@ )} in

Hg(ﬂ) x Hg(Q) and there exist constants ©» > M > 1 > m > 0 such that
-ot -Bt
Sl o 5 11T £, o 50 P lel |

And the conditions for asymptotic stability of the null solution £ = 0 of

(VIII-16) are thus a > 0 and k —-% > e > (0 for some small € > 0 wvhere k and
0

K are the constants from Garding's Inequality for T, and C0 is a constant

given by the estimate

2 2
e 15 2 ol G £, & DOW),

This completes the proof of the theorem. Thus the main computational difficul-
ty i1s find maximum values of k, C0 and minimum values of K.
Next consider the wave equation

2 2

a——%+a§£-c§—%+bu=0 (VIII-25)
ot ot ox

with a, b and ¢ constants, 0 <x < 1. And assume boundary conditions
u(t,0) = u(t,1) = 0, The corresponding representation of (VIII-25) in terms

of a closed operator W gives

d £
K
with
£
0 1
£= s U=
f -W -a
DW) = BE([0,11) 0 B2([0,1]) x HO (10,1]) and
2
wf=‘C?—-f—l+bf for £, e D) = HL([0,11) A H2([0,11)
1 52 1 tor 4 ¢ = Fotts 2uae
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By Theorem VIII-1l, the conditions for the asymptotic stability of the null

v

solution £ = 0 are a > 0 and < W fl,fl>0 > e < fl,f1>1 . Thus evaluating

1 2 -
<W fl,f1>0 = é {-c¢ %:i;L £, + b fi} d x on the CO([0,1]) functions gives

1 32fl 2 9
<L fl’ f1>0 = g{ c ¢ ™ YY"+ b fl} d x =
2
22 < f1,f,> + {(c = e)n” +b - ¢} < £1,£,>,

where the inequality

1 5% 1

f ( g-é) d x > 72 f fod x
0 B 0

2
X 1
has been used. Thus the null solution to (VIII-25) is asymptotically stable

for a > 0 and lim {(c w2 + b) - e(n® + 1)} > O.
e->0

Hence for ¢ > 0 and b > - nz c, Q.will generate a group ﬁ;t s t €( ==, =)} of

the exponential type in Hé(Q) x Hg(ﬁ).

The conditions for asymptotic stability are thus identical to those
found for the diffusion equation in Chapter VII. The solution to the wave
equation possesses the group property, while the solution to the diffusion
equation possesses only the semi-group property.

The eigenvalues ) for (VIII-3) were determined in Chapter VII as

An=b+cn21r2 n=+1, +2, ...).

Substitution in the first equation of (VIII-3) gives
2

-c—l-%+a‘—i—2+(b+cn21r2) =0 n=+1, + 2, ...
dt dt
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The eilgenvalues ul(n) and uz(n) for the characteristic equation are thus

1 1\/2 2 2
ul’z(n) =-Fats a“ -4 (b + cen'717),

Since the condition for asymptotic stability is Re u(n) < 0, it follows that

a must satisfy a > 0. Forn > 1, b + cn2 72 > 0 implies for all n, ¢ > O and

b+cn?> 0.

Hence the result: a > 0, ¢ > 0, b > = ¢ 12, This is the same as that just

found by using Lyapunov stability theory.
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IX. APPLICATIONS

In this chapter a number of applications are given., The emphasis in
these applications is on the formulation of the problem in such a way that the
formal mathematical operations yield rigorous mathematical results., The first
example shows that the Lyapunov stability theory of Chapter V is applicable to
systems of ordinary differential equations. In the next examples the emphasis
is placed on the selection of the Lyapunov Functional, so that the application
of well-known integral inequalities gives the maximal parameter range for

(6)

stability of the null solution., Some results from Eckhaus are demonstrated
using the Lyapunov stability theory. The corresponding nonlinear cases are

given in Chapter X.

Example IX~1, Consider the system

L x 0 1
sk=4Ax ,
x2 -2xl - 3x2 x2 -2 -3

. (IX-1)

S
]

>
1]

X € Rz,_é € L(Rz, Rz)

Obviously the solution x = 0 is asymptotically stable, because the eigen -
values of the coefficient matrix are -l and -2,

Next introduce a norm:

I&H§=<5&>o=f§=%+xg-

2

Then A, a bounded linear operator with D(A) = R” and R(A) = R2, is well

2

defined on the Hilbert space H, = (R"; < -,.>0) and (IX-1l) so defined belongs

0
to the class (V-1).
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1

Then take as positive definite bilinear functional V(x,y) = < %>

for x,y € Rz. And the Lyapunov Functional v(x) is:

v(x) = V(x,x) = < x,%>, x € R,
Thus

1. _ _ - _ a2
7 V(x) = VA x,%) = <A-}5’-§>0 = - XX, 3x2

which is not even negative semi-definite for all x ¢ R2. Hence the inner

does not provide us with a suitable Lyapunov Functional,

Next consider V(x,y) = < X ¥>y = <X, ..S_.-X>0’ XY € R2,

product < . 3°>4

2 1
with S = .
1 1
S 1is bounded, positive definite and symmetric, thus < ere>y is equivalent to
<ese>n. v(x) = < X,%>,, moreover
3-5 3 +4J5
7 CHKX S <HX; S 2 < XX (1X-2)
Then
1. _
5 v(x) = <A x, x> = -2xl 3x1x2 ~ 2%,
with
_.Z.<x> < <A x, X <--:!‘-<x> (IX-3)
2 220 = =221 = 2 =220

Combining (IX-3) with (IX-2) gives

- 9.2 V(x,x) <Vv(x) = 2VA x, x) < - .191 V(x,x).
2

Since R(I - A) = R, generates a group of exponential type

A
{'-]—:-t ;3 £ e(-o, ©)} in Hl = (RZ, < .,.>1) such that

-4.6t -.0955¢
e |

xll; slzzlly se Nzl
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And the origin x = 0, is asymptotically stable. The selection of the bilinear

functional V(x,y) is crucial here.

The following two examples were studied by Eckhaus(6) using approxi-

mate methods., The linear cases are given in this chapter, the nonlinear cases

are analyzed in Chapter X.

Example IX-2, Burgers' model to describe turbulence as studied by Eckhaus(6)
is given by
2 2
a__ul-u -4 2 ul+a——ul—uu =0
at 1 R ax2 3 X 12
(IX-4)
du 1
1 2
B_T:_-'-.E u2+£uldx-—0
0 < x <1, R constant and boundary conditions ul(t,O) = ul(t,l) = 0,
The linearized system is:
3 u
n=LE (IX-5)
where Y ( )
132
ul 1+§'—-2— 0 L 0
- L = 3 x -
u-= ’ = =
1 1
u2 0 -}—{. 0 —K)
7/ N
0 Ix <1 and boundary conditions ul(t,O) = ul(t,l) = 0, The operator
- 132 . .
T==l-5 =5 in Lis a formally self-adjoint strongly elliptic partial
9 X

differential operator for R > 0. In order to define L on a complete space we
must introduce distributions. Notice that u, of (IX-4) is independent of x,
thus L is defined in the C:([O,ll) X R1 functions. [/, to be introduced next,
will thus be defined on the Hilbert space L2([0,l]) X (Rl; <..o>0), where

<u,u>g = u2. This space will formally be indicated by L2([0,1]) 3 Do
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Following Chapter VII, we get for (IX-5)

af
-———-d s = e .(!_}. _f_ (IX— 6 )
with
W 0 -L 0
W = =
- 1 1
0 0 0 7

for fe? (ﬂ)'—' Hg)' ([O,l])ﬂH:Z (10,11 x (Rl H <u~>0). ) is a closed
operator with D((if_) c Lz([O,l] 3 I) and R(_(!_).) = L2([0,1] 3 I). Hence (IX-6)
belongs to the class (V-1).

Take as positive definite bilinear functional V(£f,g):

1
2
v(.f_’.g.) = <£’.&>0 = g flgl dx + fzgz f,g el (10,173 E).

The Lyapunov Functional v(f) becomes thus

V() = V(E,D = <L, £ e DY)

0 °

The next step is to evaluate V(f) = 2 < - _(_!_1_;,_1:}0 on the C;([O,l]) functions:
1
_ 2 1 3 2f, 1.2 _
<Lf,f>,=[ ] +3 £, o M x - ) =
0 3 X
1 3 f
~ 1 1.2 .2 1,2
-—[([){-R-(ax) -fl}dx+-§f2] .
The integral inequality(Sl)
195¢€ 1
J —22 d x > 72 / £ 4 x (IX-7)
3x = 1
0 0
holds for the first term in the integrand, thus
1 2
i 2 1 .2
<Lgf>0 <=1 g (g~ fdx+5 £5].

Thus - {/ is strictly dissipative for

0 <R <72
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and R(T + [¥) =L2([0,1] ; I), hence by Theorem V-5 the null solution to (IX-6)

is asymptotically stable, (! generates a contraction semi-group {Zt;t; 0} in

L2([0,1] ; I) with

-at
Nz g 2 t >0,
2
a = min ( %— -1, %D. This condition is identical to that obtained by
' 6
requiring that Amin of L be positive, since from Eckhaus( )
a2
Aln = I—{— (n+1) - 1 n = 0,1’2, s e
1
‘20 X
Example IX-3, Next consider a second example from Eckhaus(6):
du 2, 2 2 3u _ 132%u _ 1 3u
— - (x" + Yu -~ XK= =+ & T
dt JE JR 3 R2 2 5%
2 1o
+ R7 | f u dx] u=20 (IX~-8)
0 .

0 <x <1, R a positive constant, and boundary conditions u(t,0) = u(t,1) = 0,

The linearized system is given by

du _ .2 .2 2 Ju, 132
T s s B TR Py (1%=9)

0 x < 1 and boundary conditions u(t,0) = u(t,l) = 0. T = -L is for R > 0
.& strongly elliptic formal partial differential operator, which is, however,
not formally self-adjoint. (IX-9)can again be formulated in terms of the
operator differential equation (V-1) by letting:

df __yr (1X-10)

T
2
with W £ = -L £ for £ ¢ D(W) = H(])'([O,l])n n%([0,1]). Take as positive

definite bilinear functional V(f,g):
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V(£,8) = < £,85. £, g € L2([0,11).

Then we have to evaluate again V(-W f£,f) on the C;([O,l]) - functions,

Integration by parts and making use of the integral inequality (IX-7) gives

2
V(L £,£) <= (3~ %R - %% < £,£> .

Thus a sufficient condition for the asymptotic stability of the null solution,

f=0,1s
2
%-%—max {x2}>0
xe[0,1]
or

0 <R < -% (1 + 2%2 -,/l + 412),

One can improve considerably on this last condition as an evaluation
of the eigenvalues of A suggest (see Eckhaus(6)) by observing that T is

equivalent to the strongly elliptic operator T, as given by:

__1_ 2 3 _

Te T T wx) 9x (&) Bx) + q(x)
with
2

p=expJyR x
w =R exp\/-i x2

_ 2 2
q -~ - \m - X .

An inner product <ese> which is equivalent to <+3+>4 cCan now be chosen for

the positive definite bilinear functional V(f,g):
2
V(f,g) = < f,w(x) g>0 = < f’g>w f,g € L7([0,1]).

It can easily be checked that We, corresponding to Tos is self-adjoint with
respect to <ere> . Evaluation of V(—Wef,f) = <—Wef,f>W on the CO([O,l]) -

functions gives
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lr 2
R x af.2 2 2 2
v(-cf,f)_-(jJ{e ($D°-Re (x” + 771 x,
FE «°
The integral inequality (IX-7) can now be applied to e f, rather than

to £f. Substitution gives:

Vet £.68) < (ool y <£.6
Tt = R Tﬁ >TTw

The sufficient condition for the asymptotic stability of the null solution to
(IX-10) becomes then
0 <R < wt,

As should be expected, this condition is identical to that found by evaluating
the eigenvalues of 1., The choice of bilinear functional V(f,g) is thus seen
to be very important for the determination of a maximal parameter range for
asymptotic stability. The equivalence of <o re>n and <ere> indicates that
the stability properties of (IX-10) are the same for both. The selection of
the bilinear functiomnal is also important, when dealing with nonlinear systems.
This will be shown in Chapter X.

The following example shows the effect of the elimination of the
highest order odd derivative of T on the parameter range for which the system
is stable, by introducing a Tge

Example IX-4. Consider the system

4 3 2
?.-E:_(.].'_Z-a z-}- 1 3 131+-§— .a_lél.-}-_-];—?_g-]-lu):'[‘u.
2t R” 3x RVR 3% 4R 3x° VR 3x 4

(IX-11)

0 <x <1, R>0 and boundary conditions

QL

u(t,0) = u(e,l) ===

(s3]
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1 = -L is a strongly elliptic formal partial differential operator. (IX-11)
can be formaulated as (V-1) by defining

i—% - -y f (IX-12)

with W f =-Lf for fel (W) = Hg([o,l])ﬂ H4([0,l]). As V(f,g) can be
taken:
V(f,g) = < f,g>0 f,g e Lz([O,l]).
Then an evaluation of V{(-W f£,f) on the C;([O,ll) -functione results in a
sufficient condition for asymptotic stability of the solution £=0 of (IX-12):
0 <R <-§ 72,

However, T is equivalent to

1 32 32 1 32 19 1
T =+ — (p(x) ) = e =
e W (x) 3x2 3x2 R 3X \fI_{B 4
%- R x
with p(x) = e 1

2'2"[{{X
e

w(x) =R

L is also strongly elliptic. The bilinear functional V(f,g) should now be
taken as:

2
V(f,g) = < £f,w(x)g >0 = < f’g>w f,g € L7([0,1])

<ere>g and <ese> are again equivalent. Evaluation of V(—Wef,f) = <-Wef,f>w
shows that the sufficient condition for asymptotic stability of the null

solution to (IX-12) can be extended to

16 »
0 <R <=z 74,
15 VR, LR x
The integral inequality (IX~7) is here applied to e 5% and e

rather than to g—f{ and f respectively,
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The above examples illustrate clearly the application of the stability
theory developed here, The importance of the equivalent inner products is

demonstrated for the determination of maximal parameter ranges for asymptotic

stability of the null solutions., In each case the stability problem has been
formulated in such a way that all mathematical operations can be formally

carried out and these formal operations are rigorously justified.
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X. SOME NONLINEAR PARTTAL DIFFERENTTIAL EQUATIONS

The important advantage of Lyapunov's Direct Method over approximate 5‘
methods in the stability analysis of finite dimensional systems of nonlinear

ordinary differential equations ig that nonlinearities can be introduced eas-

ily and without lack of mathematical rigor. In applications, the main
emphasis is on the so-called "Lur'e type" nonlinearities, frequently
encountered in control system applications., Similar nonlinearities are found
in such distributed parameter systems as nuclear reactor systems and quantum
physics.
Here again the main problem is that of the existence and uniqueness
of the solutions, thus a problem in the theory of partial differential equa-
tions itself, 1In the following examples, the existence of solutions is not ;
rigorously established; instead the following assumptions are made:
1, The solutions to the linearized system exist and belong to a
Hilbert space H,
2., The linearized system is asymptotically stable.
3, The solutions to the nonlinear system exist and belong for all
t >0 to H,
The sufficient conditions for stability can then be based on estimates
for the nonlinear terms in the derivative of the Lyapunov Functional,

Example X-1, Consider first the non-linear case of Example IX-2 and suppress
dJu

(as in Eckhaus(6)) the 5—%% term of the second equation of (IX-4). This gives:
2 2 1
9.2=u+%9—121-9———u - R fuzdx u=Lu (X-1) '
it X I X 0 ‘

0 <x <1 and boundary conditions u(t,0) = u(t,1) = 0. And let R be a posi-

tive constant, The linearized system is asymptotically stable for
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0 <R < 72,

Define (X-1) again on a complete space, which is assumed to be the space for
the linearized system, then

ga% =~ Wf£
with Wf = - L £ for f sufficiently smooth. The domain of the linearized
differential operator is taken as D(W) = Hé([O,l])ﬂ H2([0,1]).

Take as bilinear functional V(f,g):
V(f,g) = < f,g>0 f,g € Lz([O,l]).

Then there remains to evaluate v(f) = 2< L f,f>o on the C;([O,l]) functions,

thus
1 2 2 1
<L =~ [{-£2 -2 2L s 4R [ 2 awPlax. £ D).
0 R 2
0 I X 3 X 0
Integration by parts and substitution of the boundary conditions gives:
1 2 1 5f£.2 1 2 2
<L £,65, =~ [{- £+ & +R ([ £ dx)f}dx £ e D).
0 0 R 93x 0
1
Application of the integral inequality (IX~7), the fact that f f2 dx > 0 for
5 =
f e D(W) and R > 0 gives:
a2
<L f,f>0 =<- (-?\- l) < f,f>0 fe D(W).

Thus the modified nonlinear system has, under the stated assumptions, an
asymptotically stable null solution for

0 <R <72,
(6)

This verifies the results obtained by Eckhaus .
In it is shown that a similar result is obtained if thesj?-

is not suppressed.
Example X-2, Next consider the nonlinear case of Example IX-3. The system

is given by

104




2 -
E)—l-!-=(x2+-'-2—')u+-g—x::)---l-l-+-]; ?2___125_%')_9___],\2 [f uzdx]u=Lu C=2)
It VR VR 5x R 9x 3 x 0

0 < x <1, boundary conditions u(t,0) = u(t,1) = 0 and R a positive constant.
The linearized system is asymptotically stable for 00 <R < né.

The next step is to introduce a formulation of (X-2) on a complete

spacet
d f
— == e | =
5T W £ (X-3)
with W £ = ~ I, £ for £ sufficiently smooth, The domain of the linearized

differential operator is taken as D(W) = Hé([o,l])n H2([O,1]).
The bilinear functional V(f,g) will be taken as
V(E,8) = < £,9(x) gy = < £, £,8 ¢ L°([0,1])
with w(x) = R exp R x2. For the linear part of W we must substitute the

equivalent differential operator

R R I )

where

p = expVR x°

_ =2 2
q—\_[ﬁ X o

Evaluation of V(L.£f,f) on the C;([O,l])-functions gives

1 2 VR %%, 2 2 2
V(Lf,f)=—f{emx(%—§)2-Re (x +7?{')F
0

.
+

1
[ [£%dx] £ dx
0

Integration by parts, substitution of the boundary conditions and the
1
inequality (IX-7) together with the fact that [ f2 d x>0 and R > 0 give

0
1 .2
V(L f,f)__s-f[-;—-%-ﬁ—% R xf] fzw(x) d x.
0

2 2 2
+-]2—'Reﬁxfg——-—i 413 YR
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Since 0 < x <1, L will certainly be strictly dissipative with respect to

<0">W for
2
o 1 2
R~ vx-3 RIEL> 0

for all x €[0,1]. Thus the null solution of (X-3) will be asymptotically

stable for all initial distrubances bounded by

2

( gﬁ - 1) for all f sufficiently smooth,

=

max [£] < -%
xe[0,1]

This result is again similar to that obtained by Eckhaus(6), however,

the use of Lyapunov stability theory enables one to obtain it in a straight-
forward way, without making many complicated calculations as is the case when
using asymptotic expansions.

The assumptions made concerning the existence of solutions are not
more stringent than those made as justification for the use of approximate
methods., llowever, the necessity of a self-contained Lyapunov stability theory
for certain classes of nonlinear partial differential equations remains. To
what extent the theory of monotone operators(zz) enables an extension of the

stability theory, developed here for dissipative operators, to certain classes

of nonlinear operators is left as a suggestion for further research,
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XI. CONCLUSIONS AND SUGGESTED FURTHER RESEARCH

A. Conclusions

The objective of this research is to establish a Lyapunov stability
theory for solutions to partial differential equations on a mathematically
rigorous basis. Because of the complex mathematical nature of partial
differential equations, a type of synthesis method has been developed,

Lyapunov's Direct Method for ordinary differential equatiomns is
generalized to a class of operator differential equations, This generaliza-
tion is based on the fundamental solution structure of groups and semi-groups,
which is not restricted to ordinary differential equations.

Once the stability properties are formulated in terms of the group
and semi-group structure, it becomes possible to impose the conditions for
their stability on the corresponding infinitesimal generators. This enables
the formulation of a Lyapunov stability theory, analogous to Lyapunov's
Direct Method for ordinary differential equations, for a large class of
operator differential equations—-specifically, for those bounded and unbounded
operators which are the infinitesimal generators of contraction groups and
semi-groups. The conditions for stability and asymptotic stability for this
class of operators is based on the Hilbert space theory of dissipative opera-
tors.

The Hilbert space structure, associated with dissipative operators led
to the pivotal notion of equivalent inner products, which enables one to
relate dissipativity in a satisfactory way to stability, a norm property.
Sufficient conditions are established for the stability and asymptotic
stability of semi-groups and for the null solution of the corresponding

operator differential equations. For groups this is extended to necessary and
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sufficient conditions for stability and asymptotic stability, respectively.

The next development is that of defining partial differential equa-
tions in terms of the general operator differential equation., For this pur-
pose a formal linear partial differential operator is introduced, The formal
partial differential operator is extended to an operator defined in a complete
space by introducing distributions. This is followed by associating the
partial differential equation with a boundary value problem, In order to
maintain the general operator differential equation structure this is only
carried out for the class of strongly elliptic partial differential operators
satisfying the Dirichlet boundary conditions. Subsequently, a formulation of
a class of evolution equations and a class of wave equations is obtained in
terms of the general operator differential equation.

These two classes of equations are very important in physics and
engineering applications, and the formulation as operator differential equa-
tions enables us to apply the developed Lyapunov stability theorv for a
rigorous determination of their stability properties.

The relation between the stability theory and the group and semi-
group structure automatically gives the existence and uniqueness properties
for the solutions of these equations. For the evolution equation a general
Lyapunov Functional is formulated in terms of the inner product of the Hilbert
space on which the operator is defined, Subsequent applications clearly
reveal the importance of the notion of equivalent inner products and its
consequences for obtaining maximal parameter ranges for stability,

For a class of wave equations a Lyapunov Functional is developed,
which not only clearly gives conditions for stability and asymptotic

stability of the null solution, but also exhibits the group structure of the
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solutions.

In a final chapter the stability properties of some nonlinear systems
are formally investigated. Except for these last results, the emphasis is on
a mathematically rigorous approach to the important problem of stability of
solutions to partial differential equatidns. That such an approach gives
only results for a limited class of partial differential equations is not
surprising. The theory of partial differential equations itself is a field
of extensive research in mathematics and it is forseen that many of its
developments might find applications in stability studies. Some suggestions

for further research are given in the next section.
B, Suggested Further Research

Tuture research in the stability properties of solutions to partial
differential equations can progress in many directions. Along the lines of
the stability theory developed in this research it must be pointed out that
only a small class of linear time-~invariant partial differential equations
have been formulated in terms of the general operator differen-
tial equation. The possibilities of extending this class must be explored,
even though the ri-id structure might have its limitations.

There is also a need for investigating the possibilities of extending
the developed stability theory to those linear time-varying operator differen-~
tial equations, which might possibly generate two parameter groups and semi-
groups.,

The potential use of Lyapunov stability theory to establish rigorously
the stability conditions of nonlinear systems justifies a continued effort to

extend the results for linear systems. The natural extension of linear

109




disspative operators to the nonlinear case seem to be the monotone Operators(zz)
The suggestion is that there might exist a nautral extension of the stability
theory for linear dissipative operators to one for monotone operators.

The stability theory developed is based on the Hilbert space structure,
The stability results are all with respect to norms induced by an inner pro-
duct, This provides no limitation for finite dimensional systems, since all
norms are equivalant, The question must then be raised as to how far this
equivalence of norm principle can be carried through for infinite dimensional
systems. In other words, which other norms are equivalent to the one induced
by an inner product? Is there a Banach space structure other than the
Hilbert spaces that encompasses more equivalent norms and hence a broader
stability analysis?

The stability properties obtained are generally those with respect to
the Lz-norm. The extent to which this kind of stability implies stability in
the classical sense, i.e., with respect to a cP-norm should be investigated,
This is the direction indicated by Conjecture VII-1l, Sobolev's Imbedding
Theorems will play an important role in such an evaluation.

Even though partial differential equations appear in many engineering
applications it is plain that the suggested research problems are very
mathematically orientated, Unfortunately, the complexity of partial differen-
tial equations seems to require a highly specialized mathematical background
in functional analysis, topology, generalized functions, etc. It is hoped
that this will not deter others from investigating the very important problem
of the stability of solutions to partial differential equations in the

future,
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PART 1T

CONTRACTION GROUPS AND EQUIVALENT NORMS

by
William G. Vogt Martin M. Eisen
Department of Electrical Engineering Department of Mathematics
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Gabe R, Buis
Department of Electrical Engineering
University of Pittsburgh

ABSTRACT

In this report, necessary and sufficient conditions are obtained for
a closed linear operator A to generate a group { Tt; ~® <t <o} ina
Banach gpace such that { Tt; t > 0} 1is a negative contractive semi~group
with respect to an equivalent norm. These results are refined to the case

of a group in Hilbert space.
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»« It is well known that some systems of differential equations, both

ordinary and partial, can be reduced to the form :

(1) I = Ax (xeD(A))

where A is a linear operator with domain, D(A), and range, R(A), both in a
real B-space, X, If A is the infinitesimal generator of a semi-group : ?
{T; t >0} CL(X,X) of class (Co), a solution to (1) starting at t = 0 from

t’
@)

X = xoeD(A) is given by x(t; x.) = Ttx0 for t > 0 with x(03 xo) =x5 . If

0’
A is the infinitesimal generator of a group, then the above solution is valid
for - » <t <o,

Criteria in terms of the operator A (in other words, properties of the
coefficients of the original system of differential equations) which would
enable one to deduce the existence as well as asymptotic behavior of solutions
are desirable, One such result already exists for A to be the infinitesimal
generator of a semi-group (Theorem 1), The object of this report is to refine
these results to groups of certain types. The development is in terms of

real B-gpaces but can easily be extended to complex spaces.

DEFINITION 1

Let {Tt} be a semi-group of bounded linear operators in a B-gpace, If
lITtII XN then the semi-group is said to be equibounded; if N = 1 then {Tt}

is called a contraction semji-group. If there exist finite M > O and B > O
Bt

such that l|Ttl| SMe " then {T.} is said to be a negative semi-group; if

M = 1 the semi-group is called negative contractive,

An important property of B-spaces is that a semi-scalar product [.,.]
can be defined on any B-space such that [x,y] = fy(x) where fy is a linear ;

continuous functional such that fy(y) = |ly||2 2)
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DEFINITION 2

Let X be a B-space with norm ||+|| and let [.,.] be a semi-scalar product

on X, Then the semi-scalar product [.,.], is said to be equivalent to[.,.]

1

on X iff ||+]], and ||+]| are equivalent norms onm X.
The class of operators A needed for the statement of our results is
described in the following definitioncl).

DEFINITION 3

Let A be a linear operator with D(A) and R(A) contained in a real B-space X.
A is called dissipative with respect to the semi-scalar product [.,.] if

[Ax, x] < 0 whenever xeD(A) and strictly dissipative if there exists ay > 0

such that

@) [ax, x] < - v [x, x1 = = v||x||?  (eeD(a))
The following results are due to Lumer and Phillips (2,

THEOREM 1

Let A be a linear operator with D(A) and R(A) contained in a real B-space X
and such that D(A) is dénse in X. Then A generates a contraction semi-group
in X iff A is dissipative (with respect to any semi-scalar product) and
R(I - A) = X,
COROLLARY
If A is a densely defined closed linear operator such that D(A) and R(A) are
contained in a B-space X and if A and its dual operator A' are both dissipa-
tive, then A generates a contraction semi-group.

In the course of the proof of Theorem 1 it is deduced that the resol-
vent operator of A, R(A; A), exists for all A > 0 and satisfies the estimate

||R(A; A)|| = A-l. From this fact we can deduce a useful criterion for {Tt}
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to be a group and the solution Ttxo of (1) to approach the null solution as
t - ©», We begin by considering semi-groups,

THEOREM 1'

Let A be a linear operator with D(A) and R(A) both in a real B-space X such
that D(A) is dense in X. Then A generates a negative contractive semi-group
in X iff A is strictly dissipative and R(I(1 -~ y) - A) = X where y is the
constant appearing in (2).

PROOF

Apply Theorem 1 to the dissipative operator B = A + yI, The result follows
upon noting that B generates {St; t > 0} "iff 8, = eYtTt where {Tt} is
generated by A,

From the remark preceding Theorem 1' it follows that R(u; A) exists for
all y > -y and ||R(u;8)|] < (u + y)-l. The corollary of Theorem 1 can also
be extended to strictly dissipative operators.

LEMMA 1

Let A be the infinitesimal generator of an equibounded (negative) semi-group
{T,; t 2 0} in a real B-space (X, ||.||1). Then there exists an equivalent
semi-scalar product, [.,.] inducing an equivalent norm ||-||2 with respect to
which A is (strictly) dissipative.

PROOF

By hypothesis |[[T [[; < Me™*% uhere o > 0 is a constant and the constant M may
be taken to be M > 1. If we set S, = eatTt'then {St; t >0} is a semi-group

satisfying [[S [|; <M. Let xeX and define [|.|], by

3) [|x|], = sup |[s x||
2 o £
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In (3), it is shown that
(4) Hxl1y s =M, =wullxlly (xeX)

(5) s I, <1 .
By the remark following Definition 1, there exists a semi-scalar product [.,.]

consistent with ll.||2 such that, by Theorems 1 and 1',

[(A + al)x, x] <O (xeD(A)).
This proves Lemma 1 and establishes a starting point for groups in B-spaces,
and as a gpecial case, Hilbert spaces.,

THEOREM 2
Let A be a linear operator with D(A) and R(A) both contained in a real B-space

(X, ||.||1) such that D(A) is dense in X. Then A generates a group

{T_; = ® <t <o} in X such that {It; t > 0} is a negative contractive semi-

group with respect to an equivalent norm l|.|| iff

(6) -5 |1x]1? <0ax, =1 <= v]|x])? (xeD(A))

where » > § > vy >0 and [.,.] 1s an equivalent semi-scalar product consistent

with ||-]||, and

(N : R(I(1 - v) - A) =X, R(I(1 + &) + A) = X,

PROOF
Suppose that (6) and (7) are valid. Then B = A + yI and C = -A - §lI are

dissipative., As in the proof of Theorem 1' it follows that’ Et; t >0} is a

negative contractive semi-group. Moreover R(u; A) exists for all p > =y and

[[RCGus AY|] < (u + y)—l. Similarly R(u; A) exists for all y <-§ and

[IRGus &) [} < (Ju] -5) . These last two conditions imply that A is also the
(D

infinitesimal generator of a group .
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Conversely suppose that A generates a group such that {Tt; t > 0} is

a negative contractive semi-group with respect to |[|+||, that is, l[Tt[l =§e-Bt

(t > 0) where B > 0. It is known that for a group ||T;l|| < Meat, vhere M > 1

(1). Define S, = T:le-at and define ||.||2

and a can be chosen such that a > B8
as in (3) but using ||:|| on the right of (3). Then ||St||2 <1 and ||-||2 is
equivalent to ||.|| and so equivalent to the original norm. It follows from

(5) that [Stx - x,x]2 < 0 and so upon dividing by t and letting t + O we have

[(- A - aI)x, x]2 < 0.
This yields an equivalent semi-scalar product and the left side of inequality
(6) with 8 = a. To show that the right side is also wvalid consider

B

) [,e®% - x,x] £ [[7_e®%] 1, [Ixll, = I1xl(2 .

Next estimate ]lTseBlelz as follows

Bs - (B-a)s a(s-t)
||Tse x|, i:g [ e IITS_te x|y =
= e(B-a)Smax(sup IITteatxll, ||x||2).
Ogtés
Since
sup |7 e"x|| g sup @ |x|| < BIE| )]
0Z1ss 0<t<s B

it follows that

12,1, < max (l1x]], % |x]]) < JIx]1,

Hence (8) yields

'[TseBs x—x,x]2 <0

which in turn implies the right side of (6) with y=8.
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Finally (7) follows from Theorem 1 applied to the dissipative operators
T_teat(with respect to ||-||2) and TteBt (with respect to ||-||1)
COROLLARY
If A is a densely defined closed linear operator such that D(A) and R(A) are
both contained in a B-space X and if A and its dual operator A' satisfy (6),
then A generates a group such that {Tt; t > 0} is a negative contractive semi-
group.

Theorem 2 can be strengthened in Hilbert spaces so that it holds for
scalar products. The proof is not a straightforward application of Theorem
2. The difficulty lies in the fact that if (H, (.,.)) is a Hilbert space with
scalar product (.,.) then H with an equivlanet norm is not necessarily a
Hilbert space. For example, a Euclidean 2-space (X, ||+|]) with
H(xl,xz)ll2 = xi + xg is a Hilbert space while (X, ||-||1), where
||(x1, x2)||1 = lel + |x2|, is not a Hilbert space.

We require the following lemma.
LEMMA 2
Let (H, (.,.)) be a real Hilbert space and (Tt; t > 0) a semi-group on H with
infinitesimal generator A; then

Lim (T %, Tx) = (6,%)) = 2(Ax,%)  (xeD(A)).
=0+

PROOE
The result follows from the identity

(Ttx, Ttx) = (X,x) = (Ttx, Ttx) - (x, Ttx) + (x, Ttx) - (x,%)
and the continuity of the scalar product.
THEOREM 3

Theorem 2 is valid for (H, (.,.)) a real Hilbert space and [.,.] an equivalent
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scalar product with [x,x] = ||x||2 and (x,x) = ||x||i .

PROOF

It is only necessary to prove that if A generates a group such that {Tt;t 2 0}
is a negative semi-group with respect to ||-||l, then an equation of the form

(6) is valid where [.,.] is an equivalent scalar product. Define [es.]1 by

(-]

(9) [x, y] = f(T,x, T,y) dt
o]

By hypothesis, lthlll < Me Bt (t

v

0), where B > 0 and M > 1; hence

-23t|lx

(10 (ex] = [ T x] 1% ae < f Me 112 at = /28y | || 12
[o] (o]

Since {Tt} is a group, there exist constants o > B and 1/k > 1 such that

=111
7 1=l e

||Tt-1|{1 < (1/k)eat.‘_By using the fact that ||Ttxlll > lth
follows from (9) that

(11) (eyx] 2 [ K225 [x] |2 ae = 0P/ | [x] 1]
o

We leave it to the reader to verify that [.,.] is a scalar product. The
equivalence of the two scalar products follows from (10) and (11).

To show that an equation of the form (6) is valid we consider

n n
[Tt X, Ttx] - [x, x] = 1lim[ f (TSTtx, TsTtx)ds - f (Tsx,TSx)ds]
n+® o )
ntt t
= lim | f (Tsx, Tsx) ds] - f(Tsx, Tsx)ds
nH® n o
t
= - £(Tsx, Tsx)ds, (t > 0).
This last equality and Lemma 1 imply that
(12) 20a%, x1 = - | [x]13 (xeD (A))

Equations (10}, (11), and (12) yield (6) with vy = B/Mz and § = a/kz.
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